The preoperative prediction of occult mediastinal nodal metastasis (OMNM) in patients with clinical stage I non–small cell lung cancer is crucial for appropriate surgical interventions. Although hilar lymph node dissection is routinely performed during anatomical pulmonary resections, mediastinal lymph node dissection is often omitted due to various factors, including low frequency of lymph node metastasis¹ and compromised patient conditions.

Kawamoto and colleagues² highlighted the significance of the inner margin ratio (IMR) in OMNM prediction in radiologically pure solid tumors located in the lower lobe. IMR, which is calculated as the ratio of the distance from the inner edge of the lung to the inner margin of the tumor, within the affected lung width in computed tomography axial sections, distinguishes tumors into inner-type (IMR ≤0.50) and outer-type (IMR >0.50). Patients with the inner-type demonstrated a higher incidence of mediastinal lymph node metastasis compared with those with outer-type tumors.

Although the study is limited by a low number of OMNM events,³ multivariable analysis underscored the importance of IMR as a predictor when considering variables with a P value < .20 from univariable analysis. The pulmonary lymphatic drainage pathways from the lower lobe to the mediastinum, particularly via the pulmonary ligament, play a significant role in metastatic patterns, especially for tumors located in the lower lobes.

The utility of IMR as a preoperative predictor for OMNM is more evident in lower-lobe tumors, where the distance from the mediastinum to the tumor is shorter. Additionally, IMR can be easily assessed using conventional or high-resolution computed tomography axial sections, allowing practical implementation in clinical practice.

Thus, IMR, alongside tumor distance from the mediastinum, has emerged as an effective preoperative predictor of OMNM in clinical stage I radiologically pure solid lower-lobe non–small cell lung cancer. Further studies on larger cohorts are warranted to validate these findings and address the limitations of current approaches.

Takahiro Mimae, MD, PhD
Morihito Okada, MD, PhD
Department of Surgical Oncology
Research Institute for Radiation Biology and Medicine
Hiroshima University
Hiroshima, Japan

Conflict of Interest Statement
The authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

References

https://doi.org/10.1016/j.jtcvs.2024.05.024