Advertisement
Thoracic: Lung Cancer| Volume 165, ISSUE 4, P1554-1564.e1, April 2023

A unique gene signature predicting recurrence-free survival in stage IA lung adenocarcinoma

Published:September 23, 2022DOI:https://doi.org/10.1016/j.jtcvs.2022.09.028

      Abstract

      Objective

      Resected stage IA lung adenocarcinoma has a reported 5-year recurrence-free survival of 63% to 81%. A unique gene signature stratifying patients with early-stage lung adenocarcinoma as having a high or low risk of recurrence would be valuable.

      Methods

      Gene Expression Omnibus datasets combining European and North American patients with lung adenocarcinoma (n = 684) were filtered for stage IA (n = 105) to develop a robust signature for recurrence. A univariate Cox proportional hazard regression model was used to assess the associations of gene expression with recurrence-free survival and overall survival. Leveraging a bootstrap approach of these identified upregulated genes allowed construction of a model that was evaluated by area under the receiver operating characteristics. The optimal signature has robust signature for recurrence calculated via a linear combination of expression of selected genes weighted by the corresponding Cox regression-derived coefficients. Log-rank analysis calculated recurrence-free survival and overall survival. Results were validated using the lung adenocarcinoma The Cancer Genome Atlas transcriptomic next-generation sequencing-based dataset.

      Results

      Rigorous bioinformatic analysis identified a signature of 4 genes: kinetochore-localized astrin binding protein, platelet-activating factor acetylhydrolase 1B3, macrophage inhibitory factor, and checkpoint kinase 1. Kaplan–Meier analysis of stage IA lung adenocarcinoma with this signature resulted in 5-year recurrence-free survival for low risk of 90% compared with 53% for high risk (hazard ratio, 6.55, 95% confidence interval, 2.65-16.18, P < .001), confirming the robustness of the gene signature with its clinical significance. Validation of the signature using The Cancer Genome Atlas dataset resulted in an area under the curve of 0.797 and 5-year recurrence-free survival for low- and high-risk patients with stage IA being 91% and 67%, respectively (hazard ratio, 3.44, 95% confidence interval, 1.16-10.23, P = .044).

      Conclusions

      This 4-gene signature stratifies European and North American patients with pathologically confirmed stage IA lung adenocarcinoma into low- and high-risk groups for overall survival and, more important, recurrence-free survival.

      Graphical abstract

      Key Words

      Abbreviations and Acronyms:

      AUC (area under the curve), CHEK1 (checkpoint kinase 1), CI (confidence interval), DEG (differential expression gene), EGFR (endothelial growth factor receptor), GEO (Gene Expression Omnibus), HR (hazard ratio), KNSTRN (kinetochore-localized astrin binding protein), LUAD (lung adenocarcinoma), MIF (macrophage inhibitory factor), NSCLC (non–small cell lung cancer), OS (overall survival), PAFAH1B3 (platelet-activating factor acetylhydrolase 1B3), RFS (recurrence-free survival), TCGA (The Cancer Genome Atlas)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Thoracic and Cardiovascular Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Altorki N.K.
        • Yip R.
        • Hanaoka T.
        • Bauer T.
        • Aye R.
        • Kohman L.
        • et al.
        Sublobar resection is equivalent to lobectomy for clinical stage 1A lung cancer in solid nodules.
        J Thorac Cardiovasc Surg. 2014; 147: 754-764
        • Wu C.F.
        • Ru J.Y.
        • Yeh C.J.
        • Liu Y.H.
        • Hsieh M.J.
        • Wu Y.C.
        • et al.
        Recurrence risk factors analysis for stage I non-small cell lung cancer.
        Medicine. 2015; 94: e1337
        • Beer D.G.
        • Kardia S.L.R.
        • Huang C.C.
        • Giordano T.
        • Levin A.M.
        • Misek D.E.
        • et al.
        Gene-expression profiles predict survival of patients with lung adenocarcinoma.
        Nat Med. 2002; 8: 816-824
        • Deng P.
        • Zhou R.
        • Zhang J.
        • Cao L.
        Increased expression of KNSTRN in lung adenocarcinoma predicts poor prognosis: a bioinformatics analysis based on TCGA data.
        J Cancer. 2021; 12: 3239-3248
        • Yu D.H.
        • Huang J.Y.
        • Liu X.P.
        • Ruan X.L.
        • Chen C.
        • Hu W.D.
        • et al.
        Effects of hub genes on the clinicopathological and prognostic features of lung adenocarcinoma.
        Oncol Lett. 2020; 19: 1203-1214
        • Jäger B.
        • Klatt D.
        • Plappert L.
        • Golpon H.
        • Lienenklaus S.
        • Stefan B.
        • et al.
        CXCR4/MIF axis amplifies tumor growth and epithelial-mesenchymal interaction in non-small cell lung cancer.
        Cell Signal. 2020; 73: 109672
        • Wang L.
        • Qu J.
        • Liang Y.
        • Zhao D.
        • Rehman F.U.L.
        • Qin K.
        • et al.
        Identification and validation of key genes with prognostic value in non-small-cell lung cancer via integrated bioinformatics analysis.
        Thorac Cancer. 2020; 11: 851-866
        • Mu R.
        • Liu H.
        • Luo S.
        • Patz E.F.
        • Glass C.
        • Su L.
        • et al.
        Genetic variants of CHEK1, PRIM2 and CDK6 in the mitotic phase-related pathway are associated with nonsmall cell lung cancer survival.
        Int J Cancer. 2021; 149: 1302-1312
        • Wu Y.
        • Lyu H.
        • Liu H.
        • Shi X.
        • Song Y.
        • Liu B.
        Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer.
        Sci Rep. 2016; 6: 31093
        • Jiang B.
        • Liu J.
        • Zhang Y.H.
        • Shen D.
        • Liu S.
        • Lin F.
        • et al.
        Long noncoding RNA LINC00961 inhibits cell invasion and metastasis in human non-small cell lung cancer.
        Biomed Pharmacother. 2018; 97: 1311-1318
        • Chen Y.
        • Min L.
        • Zhang X.
        • Hu S.
        • Wang B.
        • Liu W.
        • et al.
        Decreased miRNA-148a is associated with lymph node metastasis and poor clinical outcomes and functions as a suppressor of tumor metastasis in non-small cell lung cancer.
        Oncol Rep. 2013; 30: 1832-1840
        • Chen J.W.
        • Dhahbi J.
        Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods.
        Sci Rep. 2021; 11: 13323
        • He R.
        • Zuo S.
        A robust 8-gene prognostic signature for early-stage non-small cell lung cancer.
        Front Oncol. 2019; 9: 693
        • Zuo S.
        • Wei M.
        • Zhang H.
        • Chen A.
        • Wu J.
        • Wei J.
        • et al.
        A robust six-gene prognostic signature for prediction of both disease-free and overall survival in non-small cell lung cancer.
        J Transl Med. 2019; 17: 152
        • Xie H.
        • Xie C.
        A six-gene signature predicts survival of adenocarcinoma type of non-small-cell lung cancer patients: a comprehensive study based on integrated analysis and weighted gene coexpression network.
        Biomed Res Int. 2019; 2019: 4250613
        • Lau S.K.
        • Boutros P.C.
        • Pintilie M.
        • Blackhall F.H.
        • Zhu C.Q.
        • Strumpf D.
        • et al.
        Three-gene prognostic classifier for early-stage non–small-cell lung cancer.
        J Clin Oncol. 2007; 25: 5562-5569
        • Barrett T.
        • Wilhite S.E.
        • Ledoux P.
        • Evangelista C.
        • Kim I.F.
        • Tomashevsky M.
        • et al.
        NCBI GEO: archive for functional genomics data sets—update.
        Nucleic Acids Res. 2013; 41: D991-D995
        • Pechet T.T.V.
        • Carr S.R.
        • Collins J.E.
        • Cohn H.E.
        • Farber J.L.
        Arterial invasion predicts early mortality in stage I non-small cell lung cancer.
        Ann Thorac Surg. 2004; 78: 1748-1753
        • Maeda R.
        • Yoshida J.
        • Ishii G.
        • Hishida T.
        • Nishimura M.
        • Nagai K.
        Prognostic impact of intratumoral vascular invasion in non-small cell lung cancer patients.
        Thorax. 2010; 65: 1092
        • Sholl L.M.
        • Aiser D.L.
        • Varella-Garcia M.
        • Berry L.D.
        • Dias-Santagata D.
        • Wistuba I.I.
        • et al.
        Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the Lung Cancer Mutation Consortium Experience.
        J Thorac Oncol. 2015; 10: 768-777
        • Steuer C.E.
        • Behera M.
        • Berry L.
        • Kim S.
        • Rossi M.
        • Sica G.
        • et al.
        Role of race in oncogenic driver prevalence and outcomes in lung adenocarcinoma: results from the Lung Cancer Mutation Consortium.
        Cancer. 2016; 122: 766-772
        • Chen H.Y.
        • Yu S.L.
        • Chen C.H.
        • Chang G.C.
        • Chen C.Y.
        • Yuan A.
        • et al.
        A five-gene signature and clinical outcome in non–small-cell lung cancer.
        N Engl J Med. 2007; 356: 11-20
        • Ozaki Y.
        • Muto S.
        • Takagi H.
        • Watanabe M.
        • Inoue T.
        • Fukuhara M.
        • et al.
        Tumor mutation burden and immunological, genomic, and clinicopathological factors as biomarkers for checkpoint inhibitor treatment of patients with non-small-cell lung cancer.
        Cancer Immunol Immunother. 2020; 69: 127-134
        • Fang L.
        • Seki A.
        • Fang G.
        SKAP associates with kinetochores and promotes the metaphase-to-anaphase transition.
        Cell Cycle Georget Tex. 2009; 8: 2819-2827
        • Grabauskiene S.
        • Bergeron E.J.
        • Chen G.
        • Thomas D.G.
        • Giordano T.J.
        • Beer D.G.
        • et al.
        Checkpoint kinase 1 protein expression indicates sensitization to therapy by checkpoint kinase 1 inhibition in non–small cell lung cancer.
        J Surg Res. 2014; 187: 6-13
        • Li Z.
        • Sang M.
        • Tian Z.
        • Liu Z.
        • Lv J.
        • Zhang F.
        • et al.
        Identification of key biomarkers and potential molecular mechanisms in lung cancer by bioinformatics analysis.
        Oncol Lett. 2019; 18: 4429-4440
        • Wehler T.
        • Thomas M.
        • Schumann C.
        • Bosch-Barrera J.
        • Segarra N.V.
        • Dickgreber N.J.
        • et al.
        A randomized, phase 2 evaluation of the CHK1 inhibitor, LY2603618, administered in combination with pemetrexed and cisplatin in patients with advanced nonsquamous non-small cell lung cancer.
        Lung Cancer. 2017; 108: 212-216
        • Kohnz R.A.
        • Mulvihill M.M.
        • Chang J.W.
        • Hsu K.L.
        • Sorrentino A.
        • Cravatt B.F.
        • et al.
        Activity-based protein profiling of oncogene-driven changes in metabolism reveals broad dysregulation of PAFAH1B2 and 1B3 in cancer.
        ACS Chem Biol. 2015; 10: 1624-1630
        • Wang C.
        • Wang C.L.
        • Wang C.W.
        • Chen C.D.
        • Wu C.C.
        • Liang Y.
        • et al.
        Importin subunit alpha-2 is identified as a potential biomarker for non-small cell lung cancer by integration of the cancer cell secretome and tissue transcriptome.
        Int J Cancer. 2011; 128: 2364-2372
        • Kaanane H.
        • Senhaji N.
        • Berradi H.
        • Benchakroun N.
        • Benider A.
        • Karakour M.
        • et al.
        The influence of interleukin-6, interleukin-8, interleukin-10, interleukin-17, TNF-A, MIF, STAT3 on lung cancer risk in Moroccan population.
        Cytokine. 2022; 151: 155806
        • Gahr S.
        • Stoehr R.
        • Geissinger E.
        • Ficker J.H.
        • Brueckl W.M.
        • Gschwendtner A.
        • et al.
        EGFR mutational status in a large series of Caucasian European NSCLC patients: data from daily practice.
        Br J Cancer. 2013; 109: 1821-1828
        • Shi Y.
        • Au J.S.K.
        • Thongprasert S.
        • Srinivasan S.
        • Tsai C.M.
        • Khoa M.T.
        • et al.
        A Prospective, Molecular Epidemiology Study of EGFR mutations in asian patients with advanced non–small-cell lung cancer of adenocarcinoma histology (PIONEER).
        J Thorac Oncol. 2014; 9: 154-162
        • Yu X.Q.
        • Yap M.L.
        • Cheng E.S.
        • Ngo P.J.
        • Vaneckova P.
        • Karikios D.
        • et al.
        Evaluating prognostic factors for sex differences in lung cancer survival: findings from a large Australian cohort.
        J Thorac Oncol. 2022; 17: 688-699
        • Sparano J.A.
        • Gray R.J.
        • Makower D.F.
        • Pritchard K.I.
        • Albain K.S.
        • Hayes D.F.
        • et al.
        Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer.
        N Engl J Med. 2018; 379: 111-121
        • Moschovas M.C.
        • Chew C.
        • Bhat S.
        • Sandri M.
        • Rogers T.
        • Dell'Oglio P.
        • et al.
        Association between oncotype DX genomic prostate score and adverse tumor pathology after radical prostatectomy.
        Eur Urol Focus. 2022; 8: 418-424