Commentary: Toward precision surgery: Advances in defining sublobar resection candidacy

Andrew E. Giles, MD, MPH, and Biniam Kidane, MD, MSc

In 1995, Ginsberg and Rubinstein published a randomized trial demonstrating inferiority of sublobar resection in comparison to lobectomy for early non–small cell lung cancer (NSCLC). Since that time, lung cancer management has seen numerous advances from lung cancer screening to minimally invasive surgical techniques and breakthroughs in adjuvant systemic therapies. There has been a proliferation of observational studies contesting the conclusions of this early trial and several attempts to provide randomized controlled trial evidence in the modern era. We are now close to maturation of the Cancer and Leukemia Group B-140503 and Japan Clinical Oncology Group (JCOG)-0802 trials. The preliminary results of the latter trial were presented at a recent American Association for Thoracic Surgery Annual Meeting. These data indicate that whereas local recurrence is increased, patients undergoing sublobar resection benefit from improved overall survival.

As we anticipate the conclusions of these trials, this is a critical juncture to strengthen the evidence base for appropriate candidate selection for such operations. The consolidation/tumor (C/T) ratio as measured on high-resolution computed tomography (HRCT) was previously investigated in the JCOG-0201 study. They demonstrated that C/T ratios \(\leq 0.25\) and \(\leq 0.5\) were associated with a high likelihood of pathologic noninvasive NSCLC and improved long-term survival. Building on this, Muraoka and colleagues aim to define the additive role of positron-emission tomography (PET)/CT in predicting pathologic noninvasive NSCLC.

The authors examined 926 patients with clinical stage IA suspected or confirmed NSCLC who had undergone PET/CT as part of their preoperative investigations. The major finding of this study was that, although maximum standardized uptake value had superior discrimination (area under the curve, 0.842) in comparison to C/T ratio alone (area under the curve, 0.733), models incorporating maximum standardized uptake value experienced decreased sensitivity and misclassification. In contrast, for lesions with a C/T ratio \(\leq 0.5\) measured on HRCT, specificity was 97%. Remarkably, among 125 patients, this resulted in only 1 patient with a C/T ratio \(\leq 0.5\) having invasive histology. This is an improvement on the results shown in the preceding JCOG-0201 study, perhaps reflecting interim advancements in imaging technology and expertise of interpreting radiologists.

Whereas these advancements likely contributed to the notable findings of this study, it also potentially limits generalizability. The same technology, technique, and experience may not be available globally. In terms of the conclusion that PET/CT does not improve prediction, this is not surprising given that low uptake is associated with infectious lesions.

From the Section of Thoracic Surgery, Department of Surgery, Max Rady College of Medicine, and Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; and Research Institute in Oncology & Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada.

Disclosures: The authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

Received for publication July 9, 2021; revisions received July 9, 2021; accepted for publication July 12, 2021; available ahead of print July 17, 2021.

Address for reprints: Andrew E. Giles, MD, MPH, Section of Thoracic Surgery, Department of Surgery, Max Rady College of Medicine, University of Manitoba, Health Sciences Centre, GE-611, 820 Sherbrook St, Winnipeg, Manitoba R3A 1R9, Canada (E-mail: gilesa1@myumanitoba.ca).

J Thorac Cardiovasc Surg 2022;163:1666-7
0022-5223/$36.00
Copyright © 2021 by The American Association for Thoracic Surgery
https://doi.org/10.1016/j.jtcvs.2021.07.021

CENTRAL MESSAGE

Although SUVmax does not improve the ability to select candidates for sublobar resection, high-resolution computed tomography demonstrates excellent specificity for pathologic noninvasive NSCLC.
and tumors of low invasiveness. However, the degree to which low or moderate metabolism represents an early malignancy versus an alternate granulomatous or infectious process will depend on a patient’s pretest probability of having lung cancer and the endemicity of the region.

Both of these issues could be addressed by replicating the study in other regions or as a multinational study. Given the preliminary findings of JCOG-0802 and the increasing recognition of tumor spread through air spaces as a risk factor for recurrence, the authors evaluated whether adding maximum standardized uptake value (SUVmax) improved the ability to identify patients with no lymphatic invasion, vascular invasion, or lymph node metastasis. They

References

Commentary: Maximum standardized uptake value is no crystal ball for candidate selection for sublobar resection: The future is cloudy (ground-glass)

Jules Lin, MD

In this issue, Muraoka and colleagues performed a retrospective study of 926 patients with clinical stage IA lung cancer. While JCOG 0201 reported a correlation between a consolidation/tumor (C/T) ratio <0.25 and noninvasive lung adenocarcinoma, the authors evaluated whether adding maximum standardized uptake value (SUVmax) improved the ability to identify patients with no lymphatic invasion, vascular invasion, or lymph node metastasis. They