Commentary: Combined heart-lung procurement: Avoiding the bottleneck effect

Edward Buratto, MBBS, PhD, FRACS, and Igor E. Konstantinov, MD, PhD, FRACS

Although primary graft dysfunction (PGD) is uncommon after cardiac transplantation, it remains the most common cause of early mortality.1 Transplantation services balance the need for organs with the additional risk of PGD when using marginal donors. Retrieving multiple organs from a single donor is a simple way to maximize organ availability; however, whether this carries additional risks is not entirely clear. Owing to an ongoing donor shortage worldwide, new techniques have been developed in an attempt to expand the donor pool, such as donation after cardiovascular death and ex vivo perfusion.2,3

The very interesting and important article by Ram and colleagues4 published in this issue of the Journal demonstrates that combined heart and lung (CHL) procurement dramatically increases the risk for PGD following heart transplantation compared with isolated heart (IH) procurement. A multivariable analysis confirmed that CHL was independently associated with an increased risk of PGD. Interestingly, although there was a somewhat longer ischemic time in the CHL group, the absolute difference was just over 15 minutes, and the mean ischemia time was well below the threshold of 240 minutes, which previously has been demonstrated to confer higher risk.5

Why then should there be increased PGD, when the ischemia time is only marginally longer? Perhaps the additional ischemia time may indeed contribute to some degree. Although the impact of somewhat marginally prolonged ischemia time or amiodarone use was surprisingly unclear, the most striking feature was the fact that, compared with 1 L for IH procurement (Figure 1, A), the combined infused volume of cardioplegia and pneumoplegia was 6 L for CHL procurement (Figure 1, B). In the CHL procurement group, the initial infusion of 1 L of cardioplegic solution was

From the Department of Cardiac Surgery, Royal Children’s Hospital, Melbourne; the Department of Paediatrics, University of Melbourne, Melbourne; the Heart Research Group, Murdoch Children’s Research Institute, Melbourne; and the Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia.

Disclosures: The authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

Received for publication Feb 16, 2021; revisions received Feb 16, 2021; accepted for publication Feb 17, 2021; available ahead of print Feb 23, 2021.

Address for reprints: Igor E. Konstantinov, MD, PhD, FRACS, Royal Children’s Hospital, Flemington Rd, Parkville 3052, Australia (E-mail: igor.konstantinov@rch.org.au).

The Journal of Thoracic and Cardiovascular Surgery 2023;165:197-8

0022-5223/$36.00

Crown Copyright © 2021 Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery

https://doi.org/10.1016/j.jtcvs.2021.02.055

CENTRAL MESSAGE

The importance of left ventricular decompression cannot be overemphasized, particularly during combined procurement of the heart and the lungs.
followed by infusion of an extra 1 L of cardioplegic solution to allow continued distention of the ascending aorta for the duration of pneumoplegia administration, in an attempt to prevent inadvertent coronary perfusion by the lung perfusate. The venting of the heart was done via an incision in the left atrial appendage in all patients. The additional infused volume of pneumoplegia may have contributed to distension of the donor ventricle, especially if it was not effectively vented.

Can this problem be solved? An immediate, intuitive simple step would be to ensure proper venting to avoid left ventricular distention. Instead of forcing many liters of solution though the incision in the left atrial appendage, a wide opening in the left atrium would be helpful to prevent a bottleneck effect (Figure 1, C). Such left atrial incision placed between the atrioventricular groove and the pulmonary veins will ensure excellent decompression, provided that a sucker is immediately placed though it into the left atrium. Effective decompression of the left atrium would eliminate the need for an extra 1 L of cardioplegia to prevent inadvertent coronary perfusion by the lung perfusate.

Inadvertent perfusion of the coronary arteries with pneumoplegia will not occur if the left atrium is properly drained, the left ventricle is decompressed, and aorta is widely open.

The importance of left ventricular decompression cannot be overemphasized, particularly during combined procurement of the heart and lungs.

References