Commentary: A picture is worth a thousand words: Improving surgical approaches using advanced multimodal cardiac imaging

Ali Fatehi Hassanabad, MD, MSc, Vishnu Vasanthan, MD, and Paul W. M. Fedak, MD, PhD, FRCSC, FAHA

At the turn of the century, the editors of the New England Journal of Medicine identified diagnostic imaging as one of the top 10 medical advances in the last 1000 years. Indeed, advances in advanced multimodal imaging over the past 5 decades have significantly contributed to continued improvements in clinical outcomes for patients with cardiovascular diseases. From the simple chest radiograph to 4-dimensional flow aortic imaging, we can see health and disease with a depth and clarity like never before. A better understanding of intracardiac structures and cardiac function was first established by the introduction of echocardiography in 1954. This was followed by the arrival of nuclear medicine, cardiac magnetic resonance imaging (CMR), and coronary computed tomography (CT). In addition to providing more information, each of these modalities has enhanced the precision and detail that can be accessed by cardiologists and cardiac surgeons. In fact, in some cases, clinical biomarkers based on images can be identified to predict outcomes. More recently, with the advent of 3-dimensional (3D) printing, clinicians can actualize such images and can best describe and teach cardiac malformations to patients, their families, and clinical trainees. Ideally, cardiovascular clinicians will integrate and combine various diagnostic imaging modalities to highlight normal versus abnormal anatomic variants, plan reparative operations, and anticipate the effect of interventions.

In this edition of the Journal, Oberoi and colleagues use multiphasic cardiac computed tomography (CT) to introduce an interactive 3D model of the different phenotypes of hypertrophic cardiomyopathy (HCM). The images were obtained from patients before they underwent septal myectomy, with advanced image processing tools used to segment the ventricles and the myocardium in 2 dimensions and then reconstruct them in 3D from different perspectives. Before this work, visual representations of HCM variants were limited to single-slice CT images. Given the expanding and important role of patient education, the authors’ work will be a great help in explaining the morphological differences of HCM variants to patients, their families, and trainees. In this era of precision and personalized medicine, the ability to use and combine accurate and descriptive imaging modalities can help facilitate optimal clinical outcomes. Finally, the emergence of virtual reality can take such patient-specific image reconstructions to ever greater heights. Realizing the potential of these powerful tools may help us explore new surgical frontiers for the next 1000 years.

CENTRAL MESSAGE
Technologic advances with 3-dimensional image reconstruction can help visualize complex patient-specific cardiac anatomy and enhance both patient education and surgical planning.

References
Commentary: Prevention of incomplete resection during septal myectomy: Virtual seeing is actual believing
Edward Buratto, MBBS, PhD, and Igor E. Konstantinov, MD, PhD, FRACS

Extended myectomy is the gold standard for treating hypertrophic obstructive cardiomyopathy (HOCM), and it can be achieved with low complication rates in high-volume institutions.1-5 Of interest, recurrent obstruction is rare in such high-volume institutions.1-5 It is becoming increasingly apparent that the vast majority of so-called “recurrences” are in fact consequences of incomplete initial resection. Conversely, excessive resection may result in conduction abnormalities and iatrogenic ventricular septal defects.2 The matter is further complicated by the variable morphology of HOCM and the relative scarcity of these patients at many institutions. Traditionally, septal morphology is assessed primarily with 2-dimensional (2D) echocardiography, with magnetic resonance imaging used in selected cases.5 More recently, 3-dimensional (3D) computed

From the 6Department of Cardiac Surgery, Royal Children’s Hospital, Melbourne, Australia; 6Department of Paediatrics, University of Melbourne, Melbourne, Australia; 7Heart Research Group, Murdoch Children’s Research Institute, Melbourne, Australia; and 8Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia.

Disclosures: The authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

Received for publication Jan 14, 2021; revisions received Jan 14, 2021; accepted for publication Jan 14, 2021; available ahead of print Jan 20, 2021. Address for reprints: Igor E. Konstantinov, MD, PhD, FRACS, Royal Children’s Hospital, Flemington Rd, Parkville 3052, Australia (E-mail: igor.konstantinov@rch.org.au).

J Thorac Cardiovasc Surg 2022;163:e248-50
0022-5223/$36.00
Crown Copyright © 2021 Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery
http://dx.doi.org/10.1016/j.jtcvs.2021.01.052