would this feature be associated with similar benefit in patients with larger tumors?

The authors should be commended for conducting this relevant and timely investigation, which may prove to be a pivotal study to change our staging and curative approach to patients with lung cancer displaying this radiologic characteristic.

References

Commentary: The ground-glass opacity: “The savior” for lung cancer?

Ting Ye, MD, PhD, and Haiquan Chen, MD, PhD

Watanabe and colleagues’ study1 showed that part-solid lung cancer with a minor ground-glass opacity (GGO) component (≤25%) had better recurrence-free survival and overall survival than pure-solid lung cancer. Their results are consistent with previous findings that a GGO component is a favorable prognostic predictor for lung cancer.2,3 Clinically, subsolid and pure-solid lung cancer exhibit quite different natural courses. The natural evolution of subsolid nodules may be from pure GGO nodule to part-solid nodule, and eventually to pure-solid one, whereas pathologically preinvasive lesions (atypical adenomatous hyperplasia or adenocarcinoma in situ/minimal invasive adenocarcinoma) evolve to invasive adenocarcinoma. Although the evolution is sometimes slow, the actual growing pace of the GGO is uneven and unpredictable. In contrast, pure-solid tumors grow rapidly, and very small pure-solid nodules that have had mediastinal lymph node metastasis were reported previously.4 In addition, the prevalence of lymphatic metastasis is always low for subsolid malignancies, especially if there is no lymphatic metastasis for GGO-predominant tumors.5 However, in this study, there were 9% (11/126) N1/N2 metastases for solid-predominant lung cancers. The lymphatic metastasis rate of 9% is not a rare event, and more invasive surgical extent including systemic lymph node dissection is still necessary for solid-predominant tumors. Further studies should focus on these tumors with lymph node metastasis, because once the lymph nodes are involved, the GGO component may not be a favorable prognostic factor according to our unpublished data. The predictors for lymphatic metastasis and pattern of lymphatic metastasis need to be investigated.

From the Department of Thoracic Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Institute of Thoracic Oncology, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.

Disclosures: The authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

Received for publication Dec 27, 2020; revisions received Dec 27, 2020; accepted for publication Dec 28, 2020; available ahead of print Jan 8, 2021.

Address for reprints: Haiquan Chen, MD, PhD, 270 Dong’an Rd, Shanghai, China, 200032 (E-mail: hqchen1@yahoo.com.

J Thorac Cardiovasc Surg 2022;163:803-4 0022-5223/$36.00
Copyright © 2021 Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery

CENTRAL MESSAGE
Solid-predominant lung cancers have a lymphatic metastasis rate of 9%; more invasive surgical extent including systemic lymph node dissection is needed.
In addition, when we focus on radiologically solid-predominant tumors with percentage of solid component >75%, how can we differentiate them from the pure-solid tumor with minor surrounding inflammation? For the minor GGO component, it could be the inflammation on histology. If the GGO component is regarded as “the savior” for lung cancer, how can we differentiate “the savior” from the common people? Accordingly, the different radiologic features of the minor GGO lesions should be investigated. The pathologic whole-mount section, which can perfectly match the radiologic and pathologic features of subsolid tumors, may be a good method to address this issue.

References