resolution of the alveolar and interstitial hematoma. Although the lesions themselves do not require treatment, necrotizing pneumonia or secondary infection should be considered in patients with a troubled clinical course.4

This work by Schwarz and colleagues will be instrumental in encouraging the use of this often-overlooked donor pool. We look forward to the publication of more series to help standardize acceptable parameters for contused lungs and better guide donor evaluation.

References

See Article page 1719.

Commentary: “Cont”used though still used donor lungs for transplantation
Dirk Van Raemdonck, MD, PhD,a,b
Laurens J. Ceulemans, MD, PhD,a,b
Robin Vos, MD, PhD,c,b and
Arne Neyrinck, MD, PhDd,e

“Time heals all wounds; meanwhile, you have to move along with it” is a common sentiment meant to support an individual with a broken heart. Bruised tissues will discolor over time following the spectrum of colored pencils (Figure 1). Likewise, pulmonary contusion may take a few weeks to fully heal.

Organ shortage remains the most important hurdle to offering life-saving lung transplantation to more patients on the waiting list. Based on data from the Organ Procurement and Transplantation Network for 2019, the rate of lung transplantation from deceased donors was only 22.9% (n = 2714), lower than that of heart (29.9%) and liver (70.5%).1 Donor lung utilization can be boosted by active donor management,2 acceptance of nonstandard criteria donor lungs at offer,1 and organ quality assessment in the donor hospital.4

Motor vehicle accident was the mechanism of death in nearly 10% (1146 of 11,870) of deceased organ donors in the United States in 2019.1 Severe chest injury in a trauma victim may result in pulmonary contusion with endobronchial bleeding and ventilator-induced pneumonia, reducing the likelihood of the victim being considered a suitable lung donor. However, contused lungs in a polytrauma victim may show sufficient organ function to support life. In this issue of the Journal, authors from the Vienna Lung Transplant Group report that donor lungs from selected polytrauma victims can be safely transplanted with comparable outcome to noncontused lungs.

From the Departments of aThoracic Surgery, cPneumology, and 4Anesthesiology, University Hospitals Leuven, Leuven, Belgium; and Departments of 5Chronic Diseases and Metabolism and 6Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.

Disclosures: The author reported no conflicts of interest.
The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

Received for publication Nov 30, 2020; revisions received Nov 30, 2020; accepted for publication Dec 1, 2020; available ahead of print Dec 5, 2020.
Address for reprints: Dirk Van Raemdonck, MD, PhD, Department of Thoracic Surgery, Universitair Ziekenhuis Leuven, Herestraat 49, B-3000 Leuven, Belgium (E-Mail: dirk.vanraemdonck@uzleuven.be).
J Thorac Cardiovasc Surg 2022;163:1733-5
0022-5223/36.00
Copyright © 2020 by The American Association for Thoracic Surgery
https://doi.org/10.1016/j.jtcvs.2020.12.001
of 650 lung transplant recipients from nontrauma donors served as controls. No significant between-group differences were found in primary graft dysfunction (PGD) or days of mechanical ventilation days, and 1-year and 5-year survival were comparable in the 2 groups.

Three issues are important to address. First, donors in the contused and noncontused polytrauma groups were significantly younger (median, 22 years [range, 17-43 years] and 33 years [range, 23-46 years], respectively) compared with the control group (median, 46 years [range, 32-54 years]) \((P < .001)\). After propensity matching to protect against the potential confounder of younger donor age, early and late outcome parameters remained comparable.

Second, oxygenation capacity (\(\text{PaO}_2/\text{FiO}_2\)) did not differ across the donor groups (mean, 458 ± 105 mm Hg in the contused polytrauma group, 457 ± 97 mm Hg in the noncontused polytrauma group, and 442 ± 98 mm Hg in the control group; \(P = .339\)), suggesting that only those contused lungs providing sufficient gas exchange were selected. We understand that the authors could not investigate the impact of variable grades of donor lung contusion on outcome owing the retrospective nature of this study and the limited number of cases. Incorporating a pulmonary injury scale based on chest computed tomography in existing donor scores may help better fine-tune the presence of lung contusion as a potential donor risk factor for early mortality following lung transplantation. Theoretically, ex vivo lung perfusion for better functional donor lung assessment can be done, although pulmonary contusion is considered a relative contraindication for this technology because of possible parenchymal leak with loss of perfusate.
Third, although recipient diagnosis overall did not differ between groups, contused lungs were transplanted in only 2 of 44 patients (4.5%) with pulmonary arterial hypertension (PAH), compared with 57 of 650 (8.8%) in the control group. Contused donor lung recipients may have been unwittingly selected, thereby avoiding patients with PAH at increased risk for developing PGD posttransplantation.

This interesting report from a well-respected and high-volume lung transplant center in Europe is the first in-depth outcome study using lungs from donors who had sustained significant chest trauma. These results may guide other lung transplant centers in considering whether to accept contused lungs from selected donors more frequently (Figure 2). This policy may further enlarge the lung donor pool, thereby decreasing total waiting time and waiting list mortality.

We should be grateful to the Vienna Lung Transplant Group for bringing these types of lung donors to our attention and demonstrating that contusion per se is not an absolute exclusion criterion for lung donation. When carefully selected, bruised donor lungs can still support recipients’ life immediately after transplantation, with no impact on early or long-term outcome.

Commentary: Bruised and battered, but not broken—use of lung allografts from donors with chest trauma

Samuel J. Kesseli, MD, Samantha E. Halpern, BA, and Mathew G. Hartwig, MD

From the Department of Surgery and Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center; and Duke University School of Medicine, Durham, NC.

Disclosures: Dr Hartwig consults for Bridge to Life, Paragonix, Medtronic, Bio- medinnovations, and Intuitive Surgical. All other authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

Received for publication Nov 18, 2020; revisions received Nov 18, 2020; accepted for publication Nov 19, 2020; available ahead of print Dec 1, 2020.

Address for reprints: Samuel J. Kesseli, MD, Department of Surgery, Duke University Medical Center, 2301 Erwin Rd, Durham, NC 27710 (E-mail: Samuel.Kesseli@Duke.edu).

J Thorac Cardiovasc Surg 2022;163:1735-6
0022-5223/36.00
Copyright © 2020 by The American Association for Thoracic Surgery
https://doi.org/10.1016/j.jtcvs.2020.11.093

CENTRAL MESSAGE

Investigation by the Vienna Lung Transplant Group demonstrates selected lungs with traumatic contusion can be safely utilized with comparable outcomes to grafts from donors without trauma.

Eligible donors with traumatic injuries comprise more than one-third of the overall deceased donor pool, tend to be

References