structure, process, and outcome but serves as fertile sub-
strate to generate hypotheses and broaden the search for
even more ways to extend perfusion in a quest, ultimately
to increase the number of available organs for donation—
the ultimate gift.

References
1. Hozain AE, O’Neill JD, Pinezich MR, Tipograf Y, Donocoff R, Cunningham KM,
et al. Xenogeneic cross-circulation for extracorporeal recovery of injured human
Strategies to prolong homeostasis of ex vivo perfused lungs. J Thorac Cardiovasc
chymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-
lactate metabolism during acellular normothermic ex vivo lung perfusion. J Heart
nique for prolonged normothermic ex vivo lung perfusion. J Heart Lung Trans-
assessment of the ex vivo donor 406 lung for transplantation. J Heart Lung Trans-
parenteral nutrition in ex vivo lung perfusion: addressing metabolism im-
proves both inflammation and oxygenation. Am J Transplant. 2019;19:
3390-7.

See Article page 1963.

Commentary: Maintaining the pHysiological equilibrium

Alberto Benazzo, MD, and
Konrad Hoetzenecker, MD, PhD

A great potential of ex vivo lung perfusion (EVLP) lies in
reconditioning grafts of an unacceptable quality so that
they can be used for transplantation. In this regard, several
approaches have been described in experimental studies,
including the treatment of infected donor lungs with
high-dose antibiotics,1 increasing endogenous interleukin-
10 production by gene therapy,2 and clearing a graft from
hepatitis C virus.3 However, the clinical applicability of
most of these approaches is limited by the inability of
perfusing human allograft for a prolonged period of time.
In the clinical routine, a 4- to 6-hour EVLP run can be per-
formed safely, which usually allows a thorough quality
assessment of marginal organs; however, it is often too short
to correct severe derangements of allografts.

In the article “Strategies to Prolong Homeostasis of
Ex Vivo Perfused Lungs,” Takahashi and colleagues4
explored 3 different modifications of the Toronto perfusion
protocol in a pig EVLP model of 24 hours: (1) a continuous
replacement of EVLP perfusate, (2) adding glucose and so-
odium to maintain perfusate osmolality, and (3) adding
parenteral nutrition supplemented with amino acids and vi-
tamins. The authors showed that all 3 protocols resulted in
stable perfusion conditions for 24 hours, improved func-
tional parameters of the grafts, and reduced inflammatory
burden.

This paper highlights the necessity to develop more phys-
ological EVLP protocols to be able to safely prolong

Alberto Benazzo, MD, and Konrad Hoetzenecker,
MD, PhD

CENTRAL MESSAGE
Adaptions of current EVLP pro-
tocols are needed to be able to
perfuse donor lungs for 24 hours
and longer.
perfusion times. In particular, the fact that pH could be maintained above 7.0 in most of the lungs is noteworthy. pH homeostasis plays a fundamental role in physiology. During most EVLPs, a slow decrease of pH can be observed, and deteriorating lungs usually have a faster decay of pH. An acidic pH can destabilize proteins and ultimately leads to their denaturation, with consequent destruction of cell membranes and apoptosis. A low pH during EVLP is the result of an increased anaerobic glycolysis and lactate accumulation. The reasons for this remain elusive; however, mitochondrial dysfunction in damaged grafts seems likely.

Current EVLP protocols do not consider an acid–base compensatory or electrolyte-stabilizing mechanisms as physiologically provided by the kidney. Keshavjee and colleagues chose to substitute large volumes of perfusate during EVLP to maintain a physiological equilibrium. It is tempting to speculate whether the addition of a hemodialysis membrane to the EVLP setup would lead to similar results and allow a stable long-time perfusion, maybe even beyond 24 hours. In conclusion, this study performed by the Toronto Extended pig EVLP research group is highly relevant and represents the next step toward 24-hour organ preservation.

References