The authors should be commented for undertaking a large study of patients with resected lung adenocarcinoma. They provide critical molecular studies to help clarify the prognostic role of EGFR mutations in resected lung cancer that may benefit the next lung cancer staging system. However, their results suggest that EGFR mutations may be quite specific to certain subtypes. These findings will require additional data for the staging system to establish the role of EGFR mutations.

References

Commentary: Epidermal growth factor receptor mutations in resectable lung cancer: What is the prognostic importance?

Lyudmila Bazhenova, MD, a James Urbanic, MD, b and Mark Onaitis, MD c

The landscape of cancer treatment has changed with development of targeted therapeutics to driver mutations. Patients with metastatic cancer are now routinely sequenced for driver mutations, as targeted therapy has become standard of care and prognosis is improved. Despite the success in patients with metastasis, for patients with early-stage lung adenocarcinoma, little is known about the prognostic or predictive impact of driver mutations. Into this void steps the group from Fudan University in Shanghai. 1 They analyzed 1512 patients with 935 epidermal growth factor receptor (EGFR) mutations. EGFR mutation was more frequent in radiologic part-solid and stage I tumors. The presence of EGFR mutation did not impact survival in the full cohort. However, EGFR mutation strongly predicted worse survival in patients with radiologically solid and histologic acinar/papillary/invasive mucinous
adenocarcinomas and in patients with pathologic stage II/III cancers. Interestingly, patients with EGFR-mutant tumors developed more frequent brain and bone metastases than patients with wild-type EGFR tumors. Clearly, the large Chinese centers are leading the way in helping to analyze these patients.

Although these data begin to illuminate the issue, many questions remain unanswered. First and most obvious is whether EGFR-mutant patients with stage I lung cancer with radiologically solid and/or acinar/papillary/invasive tumors should be treated in the adjuvant setting with targeted EGFR inhibition. Second, should the adjuvant treatment of patients with stage II and III contain conventional chemotherapy, targeted inhibition, or both? Recent results from ADAURA, which compared osimertinib versus placebo in surgically resected stage IB-IIIA disease, showed improvement in disease-free survival in the treatment group. Although overall survival data were not yet mature, the benefit in stage IB disease was lower (hazard ratio, 0.5; 95% confidence interval [CI], 0.25-0.96) compared with stage II (0.17; 95% CI, 0.008-0.31) and stage III (0.12 m; 95% CI, 0.007-0.2), thus tempering our enthusiasm from using it in this setting. Several other trials, such as ADJUVANT, showed improvement in disease-free survival when gefitinib was compared with chemotherapy, but overall survival was not improved. However, if, as the Fudan study demonstrates, subsets of patients with stage I disease have inferior prognosis, investigating EGFR tyrosine kinase inhibitor is warranted. The ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trial) trial in the United States is ongoing, with overall survival as a primary end point. Next, what is the best local treatment for tumors with low-risk features and EGFR mutation? Would stereotactic body radiation therapy be appropriate for some of these tumors? Perhaps an analysis of subgroups that rarely have occult lymph node metastasis would be helpful in this regard. Also, regarding the metastasis findings, is there a group of patients who should be treated with prophylactic brain radiation or at least more frequent central nervous system surveillance imaging? Finally, what is the impact of co-mutations? We know that mutations in RB1 and P53 identify a poor prognostic subset of EGFR-mutated patients at least in metastatic disease. Prognostic value of co-mutations must also be analyzed in these subgroups.

All in all, the data from Fudan represent a great first step in using sequencing information to plan therapies that improve survival. Involvement of multidisciplinary teams of medical, radiation, and thoracic surgical oncologists will be key to answering further questions.

References