Commentary: A little is way too much: What we have learned about perioperative acute kidney injury

Daniel T. Engelman, MD, and Thomas A. Schwann, MD, MBA

In this issue of the Journal, Priyanka and colleagues,1 in an innovative analysis, raise awareness of the significant and hereto-underappreciated risk of acute kidney injury (AKI) following cardiac surgery. They analyzed the rates of AKI in a large multihospital cohort of 6637 patients undergoing cardiac surgery.1 They examined the relationship between The Kidney Disease: Improving Global Outcomes (KDIGO) AKI stage, defined by either serum creatinine (SCr) elevation and/or urine output criteria and the rates of subsequent major adverse kidney events (MAKE) at 180 days. In this study, KDIGO AKI occurred in a staggering 81% of patients—stage 1: 21%, stage 2: 49%, and stage 3: 12%. In stark contrast, the Society of Thoracic Surgeons (STS) database reportable AKI rate occurred in only 4%, thus giving clinicians a false sense of security and accomplishment. Most impressively, patients with stage 3 AKI had a 61.3% incidence of MAKE and a 33.3% mortality by 180 days. Importantly, even patients with stage 1 AKI had a 14.9% MAKE and 6.6% mortality compared with patients with no AKI who had a 4.5% MAKE and 2.2% mortality by 180 days. Even in the absence of any elevation of creatinine, and thus not captured by the current STS database, stage 1 AKI, as determined solely by oliguria, was an independent predictor of MAKE (odds ratio, 1.76, \(P = .004 \)). The authors further demonstrated that oliguria superimposed on stage 1 SCr-based AKI further increased the risk of adverse outcomes and intermediate-term harm.

Others have similarly demonstrated that any perioperative kidney injury, no matter how minor, and despite its apparent complete resolution during the index hospitalization as determined by a normalized SCr, significantly increases postoperative morbidity and mortality.3 Stage 1 AKI has also been independently associated with infection following cardiac surgery.3 Given the appreciable renal functional reserve, even a small increase in SCr does not occur before 50% of the renal glomerular filtration capacity is impaired. In

From the Heart and Vascular Program, Baystate Health, Springfield; and University of Massachusetts Medical School—Baystate, Springfield, Mass. Disclosures: Dr Engelman consults for Edwards-Lifesiences and the ERAS Cardiac nonprofit society receives honoraria from BioMerieux for speaking and consulting activity. Dr Schwann has nothing to disclose with regard to commercial support. Received for publication Dec 15, 2019; revisions received Dec 15, 2019; accepted for publication Dec 16, 2019; available ahead of print Jan 21, 2020. Address for reprints: Daniel T. Engelman, MD, Heart & Vascular Program, Baystate Health, 759 Chestnut St, Springfield, MA 01199 (E-mail: Daniel.Engelman@ baystatehealth.org).

addition, the almost-ubiquitous SCr hemodilution associated with cardiopulmonary bypass, fluid resuscitation, and frequent ultrafiltration further contributes to minimize any rise in SCr. Thus, small elevations in SCr indicate advanced renal dysfunction. Given these MAKE and survival data, it is clear that we need to pay more attention to less-severe stages of AKI following cardiac surgery.

One of the limitations of the manuscript was the use of the US Social Security Death Masterfile for those deaths outside a University of Pittsburgh Medical Center facility. The US Social Security Administration determined in 2011 that death information from states cannot be redisclosed except to federal benefit-paying agencies. Information obtained from states constituted approximately 40% of the records. This renders the US Social Security Death Masterfile a much less-powerful tool for biomedical research. Fortunately, the authors did not rely solely on this, and the limitations are not specific to patients with or without AKI. Hence, they may have undercounted deaths but the differences between mortality risk across AKI severity stages are still valid.

Any stage of AKI causes permanent damage and reduces both short-term and long-term survival. How then do we change practice and reduce postoperative AKI? The first step in this direction must be a better assessment of the scope of the problem by a more appropriate metric to define what indeed constitutes postcardiac surgical AKI. In light of the widespread use of the STS database as a tool in quality improvement, we respectfully submit that the definition of AKI may need to be modified. Mounting evidence, including the current manuscript, suggest that lesser degrees of AKI that are not currently captured by the database are associated with harm.

Logic dictates that any assessment of kidney injury must include KDIGO stage 1 and 2 AKI, though we must be cautious to avoid overuse of diuretics or fluids to address reduced urine output. Careful goal-directed fluid management is essential in patients undergoing cardiac surgery. The STS database already collects a preoperative and great-breathing for process improvement: internal mammary artery utilization.

We must increase the awareness of the detrimental effects of small changes in SCr following cardiac surgery. The first step is rigorous and accurate determination of our outcomes through modification of our existing STS database to capture mild and moderate AKI. Using the STS database, public reporting of quality metrics has repeatedly been demonstrated to drive positive patient-centered outcome improvement. Only then can we begin to study potential preoperative, intraoperative, and postoperative measures that may reduce the incidence of this underappreciated, frequent, and potentially preventable lethal complication following cardiac surgery.

References