(third row, left to right). The symbols σ and τ are used to distinguish the normal and shear components, respectively. It can be appreciated that the normal stress terms in the stress tensor are defined as those when $i = j$.

Emerel and colleagues are comparing the σ_{qq} (the circumferential normal, aka “hoop,” stress) with σ_{zz} (the axial normal stress), which they newly identified as relating to dissection risk.

Our literature is replete with the phrase “shear stress” with regard to the aorta. Emerel and colleagues have offered a different, and perhaps more pertinent, perspective on aortic wall stress.

Keshava Rajagopal, MD, PhD
Boyce E. Griffith, PhD
Abe DeAnda, Jr, MD

“Department of Advanced Cardiopulmonary Therapies and Transplantation
McGovern Medical School
University of Texas–Houston
Houston, Tex

bCarolina Center for Interdisciplinary Applied Mathematics
University of North Carolina
Chapel Hill, NC
cComputational Medicine Program
University of North Carolina
Chapel Hill, NC
dMcAllister Heart Institute
University of North Carolina
Chapel Hill, NC
eDivision of Cardiovascular and Thoracic Surgery
UTMB–Galveston
Galveston, Tex

References

https://doi.org/10.1016/j.jtcvs.2019.10.075
endothelial cells, with secondary effects on aortic wall remodeling.

Fortunately, my Commentary description of the role that wall shear stress may play in aortopathy and dissection remains relevant. Consider the Commentary, therefore, to complement, as well as compliment, the work of Emerel and colleagues.2

William M. DeCampli, MD, PhD
Department of Clinical Sciences
University of Central Florida College of Medicine

Orlando, Fla
Division of Pediatric Cardiothoracic Surgery
Arnold Palmer Hospital for Children
Orlando, Fla

References

https://doi.org/10.1016/j.jtcvs.2019.10.079

Author has nothing to disclose with regard to commercial support.