Advertisement
Adult: Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease| Volume 157, ISSUE 4, e153-e182, April 01, 2019

ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 appropriate use criteria for multimodality imaging in the assessment of cardiac structure and function in nonvalvular heart disease

A report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons
Open ArchivePublished:January 08, 2019DOI:https://doi.org/10.1016/j.jtcvs.2018.12.061

      Key Words

      See Commentary page 1465.

      Abstract

      This document is the second of 2 companion appropriate use criteria (AUC) documents developed by the American College of Cardiology, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. The first document
      • Doherty J.U.
      • Kort S.
      • Mehran R.
      • et al.
      ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2017 appropriate use criteria for multimodality imaging in valvular heart disease: a report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons.
      addresses the evaluation and use of multimodality imaging in the diagnosis and management of valvular heart disease, whereas this document addresses this topic with regard to structural (nonvalvular) heart disease. While dealing with different subjects, the 2 documents do share a common structure and feature some clinical overlap. The goal of the companion AUC documents is to provide a comprehensive resource for multimodality imaging in the context of structural and valvular heart disease, encompassing multiple imaging modalities.
      Using standardized methodology, the clinical scenarios (indications) were developed by a diverse writing group to represent patient presentations encountered in everyday practice and included common applications and anticipated uses. Where appropriate, the scenarios were developed on the basis of the most current American College of Cardiology/American Heart Association Clinical Practice Guidelines.
      A separate, independent rating panel scored the 102 clinical scenarios in this document on a scale of 1 to 9. Scores of 7 to 9 indicate that a modality is considered appropriate for the clinical scenario presented. Midrange scores of 4 to 6 indicate that a modality may be appropriate for the clinical scenario, and scores of 1 to 3 indicate that a modality is considered rarely appropriate for the clinical scenario.
      The primary objective of the AUC is to provide a framework for the assessment of these scenarios by practices that will improve and standardize physician decision making. AUC publications reflect an ongoing effort by the American College of Cardiology to critically and systematically create, review, and categorize clinical situations in which diagnostic tests and procedures are utilized by physicians caring for patients with cardiovascular diseases. The process is based on the current understanding of the technical capabilities of the imaging modalities examined.

      Preface

      Structural and valvular heart disease (VHD) encompass a significant proportion of cardiovascular disease conditions. Initial diagnosis and subsequent follow-up frequently rely on imaging with more than 1 imaging modality. Rapidly evolving less-invasive and transcatheter treatment options have fueled the need for precise preprocedural and intraprocedural anatomic and functional imaging.
      The publication of appropriate use criteria (AUC) reflects 1 of several ongoing efforts by the American College of Cardiology (ACC) and its partners to assist clinicians who are caring for patients with cardiovascular diseases and support high-quality cardiovascular care. The ACC/American Heart Association Clinical Practice Guidelines provide a foundation for summarizing evidence-based cardiovascular care and, when evidence is lacking, expert consensus opinion that is approved in review by the ACC and American Heart Association. However, in many areas, variability remains in the use of cardiovascular imaging modalities, raising questions of overuse or underuse. The AUC provide a practical standard upon which to assess and better understand variability.
      We are grateful to the writing committee for the development of the overall structure of the document and clinical scenarios and to the rating panel—a professional group with a wide range of skills and insights— for their thoughtful deliberation of the merits of multimodality imaging for various clinical scenarios. A special thanks to Dr. Gregory J. Dehmer for serving as an expert moderator at our in-person rating panel meeting. We would also like to thank the AUC Task Force members, who provided insight and guidance, and the ACC staff—especially María Velásquez—for their skilled support in the generation of this document.
      John U. Doherty, MD, FACC, FAHA, FACP
      Chair, Multimodality Imaging in Nonvalvular Heart Disease Writing Group
      Co-Chair, Appropriate Use Criteria Task Force

      1. Introduction

      Improvements in noninvasive cardiovascular imaging technologies and their broader application to cardiovascular diagnosis and therapy have led to a dizzying array of imaging options for the clinician. The strengths and limitations of various modalities are increasingly a body of knowledge that may be unfamiliar to general clinicians, who are, at the same time, striving to be responsible stewards of medical resources. The Appropriate Use methodology has evolved from the evaluation of single modalities of imaging to a diagnosis-based and patient-centered approach evaluating multiple diagnostic options in the assessment and care of our patients.
      Through efforts to derive maximal value from imaging, the rate of imaging volume growth in Medicare has been slowing. Still, the armamentarium of noninvasive diagnostic tools has expanded greatly, offering a variety of new and more sophisticated imaging techniques. As imaging technology and clinical applications continue to advance, the healthcare community must understand how best to incorporate these technologies into daily clinical care and how to choose between new and established imaging technologies.
      Proper diagnosis of structural heart disease has become critical as numerous catheter-based interventions are now available as less-invasive therapeutic options. For the purpose of this document, structural disease is used more broadly and includes heart failure and diseases of the aorta and pericardium, in essence, any disorder in which there is an abnormality of cardiac structure or function, excluding valvular diseases.
      Using standardized methodology, the clinical scenarios (indications) in this document were developed by a diverse writing group to represent patient presentations encountered in everyday practice and were evaluated and rated by a separate, independent rating panel.
      Because there is significant clinical overlap between structural and valvular heart disease, separating the indications in the 2 AUC documents is somewhat arbitrary. The writing group therefore deliberately followed a common structure in creating the companion documents on structural heart disease and VHD.
      Specifically, this document is organized into 4 sections and 8 tables. Section 4 provides definitions of key concepts in structural heart disease, with Table A defining the stages of valvular heart disease and Table B defining the stages of heart failure. Section 6.1. describes scenarios of initial evaluation with no prior imaging. Table 1 lists scenarios for the asymptomatic patient, whereas Table 2 lists scenarios for the symptomatic patient. Section 6.2. describes scenarios in which prior imaging has been performed and sequential evaluation required. Table 3 rates scenarios in which additional testing is used to clarify the initial diagnosis. This is meant to span the period of initial evaluation, with further testing performed as needed to establish the diagnosis and guide therapy. This may be more detailed evaluation after the identification of structural heart disease by initial imaging that has not proved definitive either in diagnosis or prognosis or in directing therapy. Table 4 describes scenarios in which additional testing is used in the context of clinical follow-up after initial diagnosis in the asymptomatic patient. This may be done to assess the response to therapy or the stability of the asymptomatic patient in whom structural heart disease has been identified by initial imaging. In this case the imaging modality may be the same as that of the initial study and is used to assess stability and/or guide therapy. Table 5 describes scenarios in which follow-up testing is done in the symptomatic patient. It encompasses follow-up imaging after the identification of structural heart disease in the face of new or worsening symptoms. Section 6.3. evaluates transcatheter intervention for structural heart disease (Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12). Table 6 and Table 7, Table 8, Table 9 evaluate diagnosis and imaging support for transient ischemic cerebral attacks and identify patent foramen ovale preprocedural, intraprocedural, and postprocedural scenarios. Table 10, Table 11, Table 12 are further divided into preprocedural, intraprocedural, and postprocedural indications. For these indications, imaging support for left atrial appendage occlusion assumes the intervention’s clinical appropriateness.
      Table AStages of valvular heart disease
      Reproduced from Nishimura et al.
      • Nishimura R.A.
      • Otto C.M.
      • Bonow R.O.
      • et al.
      2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
      StageDefinitionDescription
      AAt riskPatients with risk factors for development of VHD
      BProgressivePatients with progressive VHD (mild to moderate severity and asymptomatic)
      CAsymptomatic severeAsymptomatic patients who meet criteria for severe VHD:
      • C1: Asymptomatic patients with severe VHD in whom the left or right ventricle remains compensated
      • C2: Asymptomatic patients with severe VHD with decompensation of the left or right ventricle
      DSymptomatic severePatients who have developed symptoms as a result of severe VHD
      VHD, Valvular heart disease.
      Table BStages of Heart Failure
      StageDefinition
      Stage APatients with risk factors for heart failure but without structural disease or symptoms (eg, patient with hypertension but without left ventricular hypertrophy).
      Stage BPatient with structural disease but no symptoms (eg, asymptomatic left ventricular hypertrophy)
      Stage CCurrent or prior symptoms of heart failure
      Stage DDrug-refractory heart failure

      2. Methods

      Indication Development

      This document covers a wide array of methods for treating structural heart disease. A standardized approach was used to create different categories of indications, with the goal of capturing actual clinical scenarios, yet without making the list of indications excessively long. Indications were created to represent most of the possible treatment approaches for structural heart disease, rather than limiting the AUC to indications for which evidence was available.
      To identify and categorize the indications, a writing group was formed that comprised structural heart disease experts representing a variety of organizations and societies. Wherever possible during the writing process, the group members would map the indications to relevant clinical practice guidelines and key publications or references (see Online Appendix). Once the indications were formed, they were reviewed and critiqued by the parent AUC Task Force and by numerous external reviewers, including interventionalists, surgeons, radiologists, imagers, and generalists. After the writing group incorporated this initial feedback, the indications were sent to an independent rating panel comprising additional experts in the structural heart disease realm. The indications were then sent back to the writing group for additional vetting. Imaging for each indication was then rated and classified as Appropriate (A), May Be Appropriate (M), or Rarely Appropriate (R) on the basis of these multiple rounds of review and revision.
      A detailed description for the rating of imaging modalities is found in a previous publication, ACCF Proposed Method for Evaluating the Appropriateness of Cardiovascular Imaging,
      • Patel M.R.
      • Spertus J.A.
      • Brindis R.G.
      • et al.
      ACCF proposed method for evaluating the appropriateness of cardiovascular imaging.
      as well as the updated version, ACC Appropriate Use Criteria Methodology: 2018 Update.
      • Hendel R.C.
      • Lindsay B.D.
      • Allen J.M.
      • et al.
      ACC appropriate use criteria methodology: 2018 update.
      Briefly, this process combines evidence-based medicine and practice experience, and engages a rating panel in a modified Delphi exercise. Other steps include convening a formal writing group with diverse expertise in structural heart disease, circulating the indications for external review prior to sending them to the rating panel, ensuring an appropriate balance of expertise and practice area in the rating panel, developing a standardized rating package that includes relevant evidence, and establishment of formal roles for facilitating panel interaction at the face-to-face meeting.
      The rating panel first evaluated the indications independently. Then the panel was convened for a face-to-face meeting to discuss each indication. At this meeting, panel members were given their scores and a blinded summary of their peers’ scores. After the meeting, panel members were asked to provide their final scores for each indication independently.
      Although panel members were not provided explicit cost information to help determine their Appropriate Use ratings, they were asked to implicitly consider cost as an additional factor in their evaluation of Appropriate Use. In rating these criteria, the AUC Rating Panel was asked to assess whether the use of the test for each indication is Appropriate, May Be Appropriate, or Rarely Appropriate, and was provided the following definition of Appropriate Use:An appropriate imaging study is one in which the expected incremental information, combined with clinical judgment, exceeds the expected negative consequences
      Negative consequences include the risks of the procedure (eg, radiation or contrast exposure) and the downstream impact of poor test performance such as delay in diagnosis (false negatives) or inappropriate diagnosis (false positives).
      by a sufficiently wide margin for a specific indication that the procedure is generally considered acceptable care and a reasonable approach for the indication.
      Negative consequences include the risks of the procedure (eg, radiation or contrast exposure) and the downstream impact of poor test performance such as delay in diagnosis (false negatives) or inappropriate diagnosis (false positives).
      The rating panel scored each indication as follows:
      Median Score 7 to 9: Appropriate test for specific indication (test is generally acceptable and is a reasonable approach for the indication).An appropriate option for management of patients in this population due to benefits generally outweighing risks; an effective option for individual care plans, although not always necessary depending on physician judgment and patient-specific preferences (i.e., procedure is generally acceptable and is generally reasonable for the indication).
      Median Score 4 to 6: May Be Appropriate test for specific indication (test may be generally acceptable and may be a reasonable approach for the indication). May Be Appropriate also implies that more research and/or patient information is needed to classify the indication definitively.At times an appropriate option for management of patients in this population due to variable evidence or agreement regarding the benefit-risk ratio, potential benefit based on practice experience in the absence of evidence, and/or variability in the population; effectiveness for individual care must be determined by a patient’s physician in consultation with the patient on the basis of additional clinical variables and judgment along with patient preferences (i.e., procedure may be acceptable and may be reasonable for the indication).
      Median Score 1 to 3: Rarely Appropriate test for specific indication (test is not generally acceptable and is not a reasonable approach for the indication).Rarely an appropriate option for management of patients in this population due to the lack of a clear benefit/risk advantage; rarely an effective option for individual care plans; exceptions should have documentation of the clinical reasons for proceeding with this care option (i.e., procedure is not generally acceptable and is not generally reasonable for the indication).
      The division of the numerical scores into 3 levels of appropriateness is somewhat arbitrary, and the numeric designations should be viewed as a continuum. Further, clinical opinions may vary for particular clinical scenarios, such that scores in the intermediate level of appropriate use were labeled “May Be Appropriate,” as critical patient or research data may be lacking or discordant. This designation should be a prompt to the field to carry out definitive research investigation whenever possible. It is anticipated that the AUC reports will continue to be revised as further data are generated and information from implementation of the criteria is accumulated.
      To prevent bias in the scoring process, the rating panel was deliberately assembled to include a minority of specialists in structural heart disease. While offering important clinical and technical insights, specialists might have a natural tendency to rate the indications within their specialty as more appropriate than would nonspecialists. In addition, care was taken in providing objective, unbiased information, including clinical practice guidelines and key references, to the rating panel.
      The level of agreement among panelists as defined by RAND
      • Fitch K.
      • Bernstein S.J.
      • Aguilar M.D.
      • et al.
      The RAND/UCLA Appropriateness Method User’s Manual.
      was analyzed on the basis of the BIOMED rule for a panel of 14 to 16 members. As such, agreement was defined as an indication where 4 or fewer panelists’ ratings fell outside the 3-point region containing the median score.
      Disagreement was defined as when at least 5 panelists’ ratings fell in both the Appropriate and the Rarely Appropriate categories. Any indication having disagreement was categorized as May Be Appropriate regardless of the final median score.

      3. General Assumptions

      • 1.
        This document will address the use of multimodality imaging for evaluation of cardiac structure and function focusing on nonvalvular structural disease and interventions. The companion document evaluates valvular diseases as well as percutaneous interventions used for their treatment.
      • 2.
        Indication ratings contained herein supersede the ratings of similar indications contained in previous AUC documents.
      • 3.
        Evaluation of all indications pertains only to nonurgent clinical circumstances.
      • 4.
        A qualified clinician has obtained a complete clinical history and performed a physical examination so that the clinical status of the patient can be assumed to be valid as stated in the indication. Example: An asymptomatic patient is truly asymptomatic and sufficient questioning has been undertaken for the condition in question.
      • 5.
        All patients are receiving optimal standard care, including clinical practice guideline-based risk factor modification, primary and secondary prevention of ischemic heart disease, or treatment of heart failure, unless it is specifically noted.
      • 6.
        The indications are, at times, purposely broad to cover an array of cardiovascular signs and symptoms and to account for the ordering physician’s best judgment regarding the presence of cardiovascular abnormalities. Additionally, there are likely clinical scenarios that are not covered in this document.
      • 7.
        If the reason for a test can be assigned to more than 1 indication, the reason is classified under the most clinically significant indication.
      • 8.
        Testing modalities are rated for their level of appropriateness specific to clinical scenarios rather than a forced rank-order comparison against other testing modalities. The goal of this document is to identify any and all tests that are considered reasonable for a given clinical indication. The goal of this document is the determination of the range of modalities that may or may not be reasonable for specific indications rather than determination of a single best test for each indication or a rank order. As such, more than 1 test type may be considered Appropriate, May Be Appropriate, or Rarely Appropriate for any given clinical indication.
      • 9.
        If more than one modality falls into the same Appropriate Use category, physician judgment and available local expertise should be used to determine choice of test.
      • 10.
        The appropriate use of testing has the potential to impact clinical decision making and to direct therapeutic interventions.
      • 11.
        Patients are suitable candidates for the procedure after consideration of procedural risk. Unless explicitly stated, it is presumed that patients presenting for a specific clinical indication are potential candidates for all of the tests to be rated and do not present with strong contraindications that preclude them from being tested (eg, renal dysfunction, presence of an implanted device).
      • 12.
        Risk benefit: Overall patients’ representation as described by age and other clinical factors was used in the risk/benefit estimate. Each modality considered in this document has inherent risks that may include but are not limited to radiation exposure, contrast sensitivity, other bodily injury, and interpretation errors. For any test, there may be certain patient populations who are more susceptible to its known risks who are not specifically captured in the indications but deserve consideration when rating. Such risks should be viewed “on balance” and not used as justification to systematically reduce the level of appropriateness of a particular test relative to other tests. (eg, tests that expose the patient to ionizing radiation should not necessarily receive a lower score than those that do not). Thus, a given modality should be weighed specifically in the context of the clinical scenario, with the potential harm considered relative to the potential benefit gained.
      • 13.
        Radiation safety: No clinical evidence to date unequivocally supports the notion that low-dose ionizing radiation at the levels used in medical imaging is associated with increased long-term risk of malignancy. In a conservative approach, many experts in the field have adopted the linear no-threshold hypothesis, which assumes a linear relationship between radiation dose and risk of malignancy irrespective of radiation dose magnitude. Accordingly, the following radiation safety principles should be applied to all testing involving ionizing radiation:
        • a.
          Clinical benefit should be As High As Reasonably Achievable, embracing the guiding principle that testing should be performed on cohorts that are most likely to experience a net benefit.
        • b.
          Radiation exposure should be As Low As Reasonably Achievable (ALARA). ALARA should be used to guide test choice and the imaging protocol. Implicit in the ALARA principle is that the use of tests involving ionizing radiation should be minimized in vulnerable populations such as younger patients, and that optimal test procedures are utilized to perform the test at the lowest possible radiation dose while preserving image quality and information output.
        • c.
          Consider a patient’s exposure to ionizing radiation for noncardiac diseases. These principles and their implications for care have recently been evaluated in the 2018 ACC/HRS/NASCI/SCAI/SCCT Expert Consensus Document on Optimal Use of Ionizing Radiation in Cardiovascular Imaging.
          • Hirshfeld Jr., J.W.
          • Ferrari V.A.
          • Bengel F.M.
          • et al.
          2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents.
      • 14.
        Selection of patients for and monitoring of patients during and after contrast administration are assumed to be in accord with published standards when available.
      • 15.
        Cost: Clinical benefit should always be considered first, and cost should be considered in relationship to these benefits when determining net value. For example, a procedure with moderate clinical efficacy for a given AUC indication should not be scored as more appropriate than a procedure with a high clinical efficacy solely because of lower cost. Value may be informed by multiple measures of potential economic impact such as: a) induced downstream or layered testing rates; b) comparative cost savings or minimization for diagnostic or near-term follow-up, c) cost to reduce adverse outcomes (eg, cost for hospitalization averted); d) cost for life years gained.
      • 16.
        All tests and procedures are presumed to be performed and interpreted by qualified individuals in a facility that is in compliance with national standards for performing such imaging studies or procedures. Therefore, the level of appropriateness does not consider issues of local availability or skill in the rating of any modality.
      • 17.
        Time biases in available data: Newer technologies should not be considered necessarily more or less appropriate than older technologies. Apparent differences in diagnostic accuracy and risk stratification between older and newer techniques may not be accurate, especially when the techniques are not compared directly or when historical data are utilized. As treatment paradigms evolve, diagnosis may occur at earlier stages of disease, posing unique challenges for comparison of the performance of diagnostic modalities used at different stages of the disease process owing to time lag bias.
      • 18.
        Patients are suitable candidates for the procedure, with suitable procedural risk.

      4. Definitions

      • 1.
        Family History
        • In this document, the term “family history” refers to first-degree relatives only.
      • 2.
        Symptomatic
        • A patient is deemed to be symptomatic when he/she exhibits typical signs and/or symptoms (eg, for congestive heart failure, symptoms such as dyspnea, rales, edema, and limited exercise capacity).
      • 3.
        Asymptomatic
        • Patient is deemed asymptomatic when he/she exhibits none of the typical symptoms.
      • 4.
        Low, Moderate, and High Pretest Probability
        • As defined by the “2013 ACC/AHA/AATS/PCNA/SCAI/STS Focused Update of the Guideline for the Diagnosis and Management of Patients with Stable Ischemic Heart Disease”.
          • Fihn S.D.
          • Blankenship J.C.
          • Alexander K.P.
          • et al.
          2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons.
          Low pretest probability indicates <10% probability of disease prior to the test under consideration. Moderate pretest probability is a range of 10% to 90% pretest probability. High pretest probability is a >90% likelihood of the presence of the disease entity under question prior to any testing.
      • 5.
        Clinically Significant
        • An abnormality that, if left untreated, can or will lead to functional impairment or death.
      • 6.
        Mild, Moderate, and Severe Valvular Disease
        • As defined by the “2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease”.
          • Nishimura R.A.
          • Otto C.M.
          • Bonow R.O.
          • et al.
          2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines.
          • Nishimura R.A.
          • Otto C.M.
          • Bonow R.O.
          • et al.
          2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
      • 7.
        Stages of VHD
        • VHD as defined by the “2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease”
          • Nishimura R.A.
          • Otto C.M.
          • Bonow R.O.
          • et al.
          2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines.
          • Nishimura R.A.
          • Otto C.M.
          • Bonow R.O.
          • et al.
          2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
          (Table A).
      • 8.
        Uninterpretable or Technically Limited Images
        • Images that are not of diagnostic quality despite performance of the study by a skilled sonographer, technician, or other provider using appropriate equipment. This may be due to patient-related factors such as body habitus or motion artifact.
      • 9.
        Concomitant Coronary Artery Disease
        • Term used when coronary artery disease does not explain most of the clinical symptomology of the patient but does occur in conjunction with another disease entity.
      • 10.
        Frequent Ventricular Premature Contractions
        • Ventricular premature contractions occurring more frequently than 30 times per hour or occurring in a pattern of bigeminy, trigeminy, or runs of ventricular tachycardia.
      • 11.
        Infrequent Atrial Premature Complexes
        • Atrial premature complexes occurring less than 30 times per hour or less than once per minute.
      • 12.
        Nonsustained Ventricular Tachycardia
        • Ventricular arrhythmia of 3 or more consecutive complexes but lasting <30 seconds in duration at a rate >100 bpm.
      • 13.
        Sustained Ventricular Tachycardia
        • Ventricular tachycardia lasting more than 30 seconds or requiring therapy because of hemodynamic compromise in <30 seconds.
      • 14.
        Syncope
        • Transient loss of consciousness due to global cerebral hypoperfusion characterized by rapid onset, short duration, and spontaneous complete recovery; not lightheadedness or dizziness alone.
      • 15.
        Presyncope
        • Near loss of consciousness.
      • 16.
        Heart Failure
        • Signs and symptoms explainable on the basis of systolic or diastolic dysfunction.
      • 17.
        Heart Failure Stages A, B, C, and D
        • Heart failure as defined by the “2009 Focused Update Incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults”
          • Hunt S.A.
          • Abraham W.T.
          • Chin M.H.
          • et al.
          2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation.
          (Table B).
      • 18.
        Indication
        • Synonymous with “scenario.” A set of patient-specific conditions defines “indication.” The term “clinical indication” does not necessarily imply that testing is warranted. In other words, for some clinical indications, all modalities may be rated as Rarely Appropriate.

      5. Abbreviations

      3D = 3-dimensional
      ANG = invasive coronary angiography/ventriculography/aortography
      AUC = appropriate use criteria
      Cardiac MR = cardiovascular magnetic resonance imaging
      CRT= cardiac resynchronization therapy
      CT = computed tomography
      DSE = dobutamine stress echocardiography
      FDG-PET = fluorodeoxyglucose-positron emission tomography
      MPI = myocardial perfusion imaging
      RVG = radionuclide ventriculography
      SPECT = single-photon emission computed tomography
      TEE = transesophageal echocardiography
      TTE = transthoracic echocardiography

      6. Multimodality Imaging in Nonvalvular Heart Disease: Appropriate Use Criteria (By Indication)

      6.1 Initial Evaluation of Cardiac Structure and Function

      Table 1Initial evaluation of an asymptomatic patient
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; Echo, echocardiography; RVG, radionuclide ventriculography; MPI, myocardial perfusion imaging; SPECT, single-photon emission computed tomography; PET, positron emission tomography; CMR, cardiovascular magnetic resonance imaging; CT, computed tomography; A, appropriate; R, rarely appropriate; M, may be appropriate; ECG, electrocardiogram.
      Stress echo comprises exercise stress echocardiography and dobutamine stress echocardiography.
      Table 2Initial evaluation of a patient with clinical signs and/or symptoms of heart disease
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; F-18 FDG, fluorodeoxyglucose F18; PET, positron emission tomography; Tc-99m PYP, technetium-99m pyrophosphate; MPI, myocardial perfusion imaging; SPECT, single-photon emission computed tomography; CMR, cardiovascular magnetic resonance imaging; CT, computed tomography; ANG, angiography/ventriculography/aortography; RVG, radionuclide ventriculography; A, appropriate; R, rarely appropriate; M, may be appropriate; LBBB, left bundle branch block; RBBB, right bundle branch block; VPC, ventricular premature contraction; VT, ventricular tachycardia; VF, ventricular fibrillation; SVT, supraventricular tachycardia; HF, heart failure; ACS, acute coronary syndrome; LV, left ventricular; CAD, coronary artery disease; ICD, implantable cardioverter-defibrillator; CRT, cardiac resynchronization therapy.
      Stress echo comprises exercise stress echocardiography and dobutamine stress echocardiography.
      Could include CT angiography of the coronaries or any other vessel.

      6.2 Evaluation of Cardiac Structure and Function in Patients Who Had Prior Testing

      Table 3Sequential or follow-up testing to clarify initial diagnostic testing
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; SE, stress echocardiography; DSE, dobutamine stress echocardiography; F-18 FDG, fluorodeoxyglucose F18; PET, positron emission tomography; Tc-99m PYP, technetium-99m pyrophosphate; MPI, myocardial perfusion imaging; SPECT, single-photon emission computed tomography; CMR, cardiovascular magnetic resonance imaging; CT, computed tomography; ANG, angiography/ventriculography/aortography; R, rarely appropriate; A, appropriate; M, may be appropriate; CAD, coronary artery disease; HF, heart failure; AUC, Appropriate Use Criteria.
      ∗For more specific scenarios, please refer to the Heart Failure AUC.
      †Modalities grayed out assumes modality has been performed.
      Table 4Sequential or follow-up testing: asymptomatic or stable symptoms
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; F-18 FDG, fluorodeoxyglucose F18; PET, positron emission tomography; Tc-99m PYP, technetium-99m pyrophosphate; CMR, cardiovascular magnetic resonance imaging; CT, computed tomography; RVG, radionuclide ventriculography; HF, heart failure; R, rarely appropriate; A, appropriate; M, may be appropriate.
      Table 5Sequential or follow-up testing: new or worsening symptoms or to guide therapy
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; Ex.-SE, exercise stress echocardiography; DSE, dobutamine stress echocardiography; F-18 FDG, fluorodeoxyglucose F18; PET, positron emission tomography; Tc-99m PYP, technetium-99m pyrophosphate; MPI, myocardial perfusion imaging; SPECT, single-photon emission computed tomography; CMR, cardiovascular magnetic resonance imaging; CT, computed tomography; ANG, angiography/ventriculography/aortography; RVG, radionuclide ventriculography; A, appropriate; M, may be appropriate; R, rarely appropriate; HF, heart failure; CRT, cardiac resynchronization therapy.

      6.3 Evaluation of Cardiac Structure and Function in Patients Undergoing Transcatheter Intervention for Structural Heart Disease

      Table 6Imaging for the evaluation of TIA or ischemic stroke
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; TCD, transcranial Doppler; MRA, magnetic resonance angiography; H/N, head and neck; CTA, computed tomography angiography; MR, magnetic resonance; CT, computed tomography; ANG, angiography/ventriculography/aortography; TIA, transient ischemic attack; A, appropriate; M, may be appropriate; R, rarely appropriate.

      6.3.1 Imaging for the evaluation of patent foramen ovale or atrial septal defect

      Table 7Preprocedural evaluation for closure of PFO or atrial septal defect
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; CMR, cardiovascular magnetic resonance imaging; CTA, computed tomography angiography; ANG, angiography/ventriculography/aortography; PFO, patent foramen ovale; A, appropriate; M, may be appropriate; R, rarely appropriate.
      Table 8Intra-procedural guidance for closure of PFO or ASD
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; ICE, intracardiac echocardiography; TCD, transcranial Doppler; Fluoro, fluoroscopy; ASD, atrial septal defect; PFO, patent foramen ovale; R, rarely appropriate; A, appropriate.
      Table 9Assessment following closure of PFO or ASD
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; CMR, cardiac magnetic resonance; CT, computed tomography; ASD, atrial septal defect; PFO, patent foramen ovale; A, appropriate; M, may be appropriate; R, rarely appropriate.

      6.3.2 Imaging for the evaluation of left atrial appendage occlusion device

      Table 10Pre-procedural evaluation for LAA occlusion
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; CTA, computed tomography angiography; CMR, cardiac magnetic resonance; LV, left ventricular; A, appropriate; M, may be appropriate; LA, left atrial; LAA, left atrial appendage.
      Table 11Intraprocedural guidance for LAA occlusion
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; ICE, intracardiac echo; Fluoro, fluoroscopy; LAA, left atrial appendage; A, appropriate; M, may be appropriate.
      Table 12Assessment following LAA occlusion
      TTE, Transthoracic echocardiography; 3D, 3-dimensional; TEE, transesophageal echocardiography; CTA, computed tomography angiography; CMR, cardiac magnetic resonance; Fluoro, fluoroscopy; LV, left ventricular; M, may be appropriate; R, rarely appropriate; FDA, Food and Drug Administration; A, appropriate.

      7. Discussion

      AUC are intended to inform clinicians, patients, and health policy makers about the reasonable use of technologies to help improve patient symptoms and health outcomes. Since 2005, the ACC, along with its professional partners, has worked to provide criteria for both invasive and noninvasive testing and selected treatments, further expanding the AUC portfolio.
      • Patel M.R.
      • Spertus J.A.
      • Brindis R.G.
      • et al.
      ACCF proposed method for evaluating the appropriateness of cardiovascular imaging.
      • Hendel R.C.
      • Lindsay B.D.
      • Allen J.M.
      • et al.
      ACC appropriate use criteria methodology: 2018 update.
      • Wolk M.J.
      • Bailey S.R.
      • Doherty J.U.
      • et al.
      ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons.
      • Hendel R.C.
      • Patel M.R.
      • Kramer C.M.
      • et al.
      ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging.of cardiovascular imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology.
      • Taylor A.J.
      • Cequeira M.
      • Hodgson J.M.
      • et al.
      ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance.
      • Hendel R.C.
      • Berman D.S.
      • Di Carli M.F.
      • et al.
      ACCF/ASNC/ACR/AHA/ASE/ SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine.
      • Douglas P.S.
      • Garcia M.J.
      • Haines D.E.
      • et al.
      ACCF/ASE/AHA/ASNC/ HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance.
      The 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease is the culmination of the analysis of various modalities used in the evaluation and treatment of patients with nonvalvular heart disease. The document signals a shift from documents evaluating a single modality in various disease states to documents evaluating multiple imaging modalities and focusing on evidence and clinical experience within a given disease category. We believe that this approach better reflects clinical decision making in real-world scenarios and offers the diagnostic choices available to the clinician.
      Because a given modality may address diverse disease states, indications previously compiled in a single document may be spread over several AUC documents. The previous nonvalvular heart disease–related indications that the current paper supplants are contained in the echocardiography (echo),
      • Douglas P.S.
      • Garcia M.J.
      • Haines D.E.
      • et al.
      ACCF/ASE/AHA/ASNC/ HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance.
      radionuclide imaging,
      • Hendel R.C.
      • Berman D.S.
      • Di Carli M.F.
      • et al.
      ACCF/ASNC/ACR/AHA/ASE/ SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine.
      and computed tomography/magnetic resonance imaging AUC documents.
      • Hendel R.C.
      • Patel M.R.
      • Kramer C.M.
      • et al.
      ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging.of cardiovascular imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology.
      • Taylor A.J.
      • Cequeira M.
      • Hodgson J.M.
      • et al.
      ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance.
      Other indications in these documents remain in force until these scenarios are evaluated in subsequent documents.
      The tables in this paper are organized to reflect the spectrum of patients with nonvalvular heart disease—from patients with no symptoms suspected of having nonvalvular heart disease to patients with signs and symptoms ranging from mild to severe. The first 2 tables are for initial evaluation when no prior imaging has been done. As noted, the diagnostic choices vary among the tables and reflect the options that would be considered in the initial evaluation by most clinicians. If a diagnostic test would seldom or never be considered, it was not included as an option for the rating panel.
      Table 1 addresses the initial evaluation of an asymptomatic patient.
      • Greenland P.
      • Alpert J.S.
      • Beller G.A.
      • et al.
      2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
      This encompasses a variety of clinical scenarios, including the evaluation of patients with a known disease state that could be associated with structural heart disease, evaluation for structural heart disease in first-degree relatives of a patient with inherited cardiomyopathy,
      • Gersh B.J.
      • Maron B.J.
      • Bonow R.O.
      • et al.
      2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
      initial evaluation prior to exposure to potentially cardiotoxic medications,
      • Plana J.C.
      • Galderisi M.
      • Barac A.
      • et al.
      Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
      • Yancy C.W.
      • Jessup M.
      • Bozkurt B.
      • et al.
      2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
      and participation for asymptomatic athletes with and without a family history of heart disease.
      • Maron B.J.
      • Zipes D.P.
      • Kovacs R.J.
      • et al.
      on behalf of the American Heart Association Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, Council on Cardiovascular Disease in the YoungCouncil on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and the American College of Cardiology
      Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American College of Cardiology.
      Imaging of the thoracic aorta is evaluated in patients with a known or suspected connective tissue or genetic condition that predisposes patients to aortic aneurysm or in patients whose relatives have a known aortic aneurysm or dissection.
      • Hiratzka L.F.
      • Bakris G.L.
      • Beckman J.A.
      • et al.
      2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine (developed in collaboration with the American College of Emergency Physicians).
      • Warnes C.A.
      • Williams R.G.
      • Bashore T.M.
      • et al.
      ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Adults With Congenital Heart Disease).
      Finally, suspected pulmonary arterial hypertension (including the evaluation of right ventricular function) is evaluated in patients at risk for developing pulmonary hypertension.
      • Cheitlin M.D.
      • Armstrong W.F.
      • Aurigemma G.P.
      • et al.
      ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines on the Clinical Application of Echocardiography).
      As might be expected, transthoracic echo is rated Appropriate in all of these scenarios. Strain rate imaging by speckle tracking is also rated May Be Appropriate for specific indications. Cardiac MR and cardiac computed tomography (CT) are rated May Be Appropriate for specific cardiac indications and are rated Appropriate for the evaluation of the thoracic aorta.
      Table 2 addresses initial evaluation of a patient with clinical signs and or symptoms of cardiac disease.
      • Yancy C.W.
      • Jessup M.
      • Bozkurt B.
      • et al.
      2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
      This is further subdivided into the categories of arrhythmias or conduction disorders; palpitations/presyncope/syncope
      • Gersh B.J.
      • Maron B.J.
      • Bonow R.O.
      • et al.
      2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
      • Priori S.G.
      • Blomstrom-Lundqvist C.
      • Mazzanti A.
      • et al.
      2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology.
      • January C.T.
      • Wann L.S.
      • Alpert J.S.
      • et al.
      2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society.
      • Bouas-Mosquera A.
      • Peteiro J.
      • Broullon F.
      • et al.
      Prognostic value of exercise echocardiography in patients with atrial fibrillation.
      • Moya A.
      • Sutton R.
      • Ammirati F.
      • et al.
      Task Force for the Diagnosis and Management of Syncope, European Society of Cardiology
      Guidelines for the diagnosis and management of syncope—update 2009.
      ; hypotension or hemodynamic instability; hypertensive heart disease; acute coronary syndromes; respiratory failure; heart failure; pulmonary hypertension
      • Porter T.R.
      • Shillcutt S.K.
      • Adams M.S.
      • et al.
      Guidelines for the use of echocardiography as a monitor for therapeutic interventions in adults: a report from the American Society of Echocardiography.
      • Spencer K.
      • Kimura B.J.
      • Korcarz C.E.
      • et al.
      Focused cardiac ultrasound: recommendations from the American Society of Echocardiography.
      • Silvestry F.E.
      • Kerber R.E.
      • Brook M.M.
      • et al.
      Echocardiography-guided interventions.
      ; device therapy
      • Gorcsan III, J.
      • Abraham T.
      • Agler D.A.
      Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting: a report from the American Society of Echocardiography Dyssynchrony Writing Group.
      • Stainback R.F.
      • Estep J.D.
      • Agler D.A.
      • et al.
      for the American Society of Echocardiography
      Echocardiography in the management of patients with left ventricular assist devices: recommendations of the American Society of Echocardiography.
      ; and cardiac transplantation, including monitoring for rejection in a recipient and evaluation of structure and function in a potential heart donor.
      • Cheitlin M.D.
      • Armstrong W.F.
      • Aurigemma G.P.
      • et al.
      ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines on the Clinical Application of Echocardiography).
      • Klocke F.J.
      • Baird M.G.
      • Lorell B.H.
      • et al.
      ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Radionuclide Imaging).
      In addition, evaluation for suspected pericardial disease or suspected acute aortic pathology and initial evaluation of cardiac mass or potential cardiac source of embolism are examined. As might be expected, the modality chosen depends upon the disease state for which the clinician wishes to evaluate. That being said, transthoracic echo is the modality recognized as Appropriate in most of the scenarios. Coronary angiography is also included and is found to be Appropriate in the evaluation of the patient with sustained ventricular tachycardia or ventricular fibrillation but is not an initial testing modality across other scenarios. The presence of atrial fibrillation in which ischemia may be a trigger resulted in a May Be Appropriate rating for single-photon emission computed tomography imaging and stress echo. Scenarios such as a newly diagnosed right bundle branch block, supraventricular tachycardia, and palpitations without other symptoms or signs of heart disease resulted in a May Be Appropriate rating for transthoracic echo and a Rarely Appropriate rating for all other modalities. Mechanical complications of myocardial infarction are evaluated with an Appropriate rating for both transthoracic and transesophageal echo, but cardiac MR and cardiac CT as well as coronary angiography with ventriculography received a May Be Appropriate rating. F-18 fluorodeoxyglucose-positron emission tomography and technetium 99m pyrophosphate injection are also evaluated and received a May Be Appropriate rating for the evaluation of cardiac sarcoid and amyloid, respectively.
      Section 6.2 evaluates cardiac structure and function in patients who have undergone prior testing. As examined in Table 3, this sequential testing is done to clarify the initial diagnosis. These are instances in which the initial imaging modality—commonly transthoracic echo—has not yielded a definitive diagnosis. Scenarios included here are left ventricular dysfunction not explained by the presence of severe valvular disease, pulmonary hypertension in the absence of severe valvular disease, and left ventricular systolic dysfunction in which myocardial ischemia has not been excluded.
      • Gersh B.J.
      • Maron B.J.
      • Bonow R.O.
      • et al.
      2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
      • Nagueh S.F.
      • Bierig S.M.
      • Budoff M.J.
      • et al.
      Guidelines and standards. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy.
      Specific testing modalities for certain cardiac diagnoses such as sarcoidosis, amyloidosis, and hypertrophic cardiomyopathy are included.
      • Klocke F.J.
      • Baird M.G.
      • Lorell B.H.
      • et al.
      ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Radionuclide Imaging).
      Although certain modalities are very specific for diagnoses such as sarcoidosis or amyloidosis,
      • Youssef G.
      • Leung E.
      • Mylonas I.
      • et al.
      The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience.
      • Nadel J.
      • Lancefield T.
      • Voskoboinik A.
      • Taylor A.J.
      Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death.
      • Ruberg F.L.
      • Berk J.L.
      Transthyretin (TTR) cardiac amyloidosis.
      • Fontana M.
      • Pica S.
      • Reant P.
      • et al.
      Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis.
      cardiac MR was ranked Appropriate and of significant diagnostic utility across a variety of disease states. The evaluation of the aortic sinuses and ascending aorta are well-delineated by cardiac MR, cardiac CT, and transesophageal echocardiography when transthoracic echo has not proven definitive.
      • Hiratzka L.F.
      • Bakris G.L.
      • Beckman J.A.
      • et al.
      2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine (developed in collaboration with the American College of Emergency Physicians).
      • Warnes C.A.
      • Williams R.G.
      • Bashore T.M.
      • et al.
      ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Adults With Congenital Heart Disease).
      All 3 modalities were ranked Appropriate. Likewise, cardiac MR and cardiac CT are useful beyond coronary angiography for further anatomic characterization of anomalous coronary arteries.
      Table 4 evaluates sequential or follow-up testing to assess for clinical stability when a diagnosis has been established and the patient is asymptomatic or exhibits stable symptoms. All modalities were found to be Rarely Appropriate when used for repeat imaging in less than 1 year in patients at risk of heart failure without structural heart disease, with known hypertension without a change in their clinical status, or with systolic or diastolic heart failure without a change in clinical status.
      • Yancy C.W.
      • Jessup M.
      • Bozkurt B.
      • et al.
      2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
      Conversely, in patients who are imaged after having undergone therapy with potentially cardiotoxic agents, repeat imaging in less than a year was deemed Appropriate for transthoracic echo, strain imaging, and radionuclide ventriculography, and May Be Appropriate for cardiovascular magnetic resonance imaging.
      • Schwartz R.G.
      • Jain D.
      • Storozynsky E.
      Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively.
      • Plana J.C.
      • Galderisi M.
      • Barac A.
      • et al.
      Expert consensus for multimodality imaging: evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
      In patients with a bicuspid aortic valve with an initial aortic dilatation of greater than 4.5 centimeters, family history of dissection or rapid rate of change in the aortic diameter, re-evaluation in less than 1 year by cardiovascular magnetic resonance imaging or CT is rated May Be Appropriate. There was discussion among writing group members that evaluation by transthoracic echo may be considered in a specific subset of patients in which the involved segment of the aorta is well-visualized by echo and/or in which repeated exposure to radiation is undesirable, such as in young women.
      In patients without these concerning features, imaging in less than 1 year is considered Rarely Appropriate for all modalities.
      • Hiratzka L.F.
      • Bakris G.L.
      • Beckman J.A.
      • et al.
      2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine (developed in collaboration with the American College of Emergency Physicians).
      Evaluation of known moderate or greater pulmonary hypertension by transthoracic echo in an interval of less than 1 year was rated May Be Appropriate, whereas re-evaluation after 1 year or longer was deemed Appropriate. Serial imaging of a chronic asymptomatic pericardial effusion in instances in which findings would potentially alter therapy was rated Appropriate for transthoracic echo and May Be Appropriate for cardiac MR. In a similar fashion, re-evaluation of an intracardiac mass when findings would potentially alter therapy was deemed Appropriate for transthoracic and transesophageal echocardiography, cardiac MR, and cardiac CT. It is not recommended to re-evaluate for resolution of left atrial thrombus after anticoagulation unless a change in therapy is warranted. In this instance, all modalities were rated Rarely Appropriate.
      Table 5 evaluates sequential or follow-up testing in which a diagnosis has been established in the setting of new or worsening symptoms or to guide therapy. This table encompasses a variety of clinical diagnoses. It includes patients with heart failure with a deterioration in their clinical status and re-evaluation after revascularization or optimal medical therapy to determine device candidacy. It also includes re-evaluation for cardiac resynchronization therapy device optimization. Serial imaging was also used to evaluate the progression of a pericardial effusion with the development of tamponade or the progression of constrictive pericarditis. Serial imaging was also use to evaluate patients with known aortic dilatation with a change in clinical status. In this table, a variety of imaging modalities showed utility. Although transthoracic echo was generally ranked Appropriate for most of these scenarios, there was a significant role for transesophageal echo in specific indications such as evaluation of the thoracic aorta and resolution of intracardiac thrombus. Cardiac MR and CT were also useful for a variety of indications. Cardiac CT was rated Appropriate for evaluation of pericardial mass and the thoracic aorta as was cardiac MR, whereas cardiac MR was found to be Appropriate for re-evaluation of the progression of constriction. Radionuclide ventriculography was Appropriate for serial evaluation of patients undergoing cardiotoxic therapy, where it was ranked Appropriate. It was ranked May Be Appropriate for serial imaging in patients with known cardiomyopathy with a change in their clinical status.
      Section 6.3. evaluates cardiac structure and function in patients undergoing transcatheter interventions for structural heart disease. Table 6 evaluates imaging for the evaluation of transient ischemic attacks or ischemic stroke.
      • Pristipino C.
      • Anzola G.P.
      • Ballerini L.
      • et al.
      Management of patients with patent foramen ovale and cryptogenic stroke: a collaborative, multidisciplinary, position paper: executive summary.
      This table is included as a prelude to the subsequent tables on evaluation of closure of a patent foramen ovale or atrial septal defect or structural intervention to place a left atrial appendage occlusion device. Depending upon the clinical suspicion of the source of the stroke or TIA, different modalities are evaluated. Assessment of the intracranial arteries is most appropriately done with MR angiography or CT angiography of the head and neck, whereas assessment of the extracranial arteries is most appropriate with carotid Doppler in addition to these 2 modalities.
      The evaluation for closure of a patent foramen ovale or atrial septal defect is divided into preprocedural evaluation,
      • Osawa K.
      • Miyoshi T.
      • Morimitsu Y.
      • et al.
      Comprehensive assessment of morphology and severity of atrial septal defects in adults by CT.
      intraprocedural guidance, and assessment following closure of PFO or atrial septal defect (Table 7, Table 8, Table 9). For preprocedural guidance, both transthoracic and transesophageal echo are rated Appropriate, and the addition of 3-dimensional (3D) transesophageal echo imaging as an adjunct is rated May Be Appropriate. For assessment of atrial septal anatomy, transthoracic echo, transesophageal echo, 3D transesophageal echo imaging, CT, and MR are rated Appropriate. For intraprocedural guidance, the same imaging tools are deemed appropriate regardless of whether the patient appears to have complex or simple anatomy. In cases requiring intraprocedural guidance, transesophageal echo with or without 3D imaging, intracardiac echo, and fluoroscopy are all rated Appropriate. Routine assessment following closure of a patent foramen ovale is accomplished with transthoracic echo with the occasional use of transesophageal echo, which was rated May Be Appropriate.
      • Silvestry F.E.
      • Cohen M.S.
      • Armsby L.B.
      • et al.
      Guidelines for the echocardiographic assessment of atrial septal defect and patent foramen ovale: from the American Society of Echocardiography and Society for Cardiac Angiography and Interventions.
      Nonroutine assessment of such patients when there is clinical concern for infection, malposition, embolization, or persistent shunt involves utilizing transesophageal echo as a first-line technique where it is ranked Appropriate.
      Table 10, Table 11, Table 12 evaluate the preprocedural,
      • Masoudi F.A.
      • Calkins H.
      • Kavinsky C.J.
      • et al.
      2015 ACC/HRS/SCAI left atrial appendage occlusion device societal overview.
      • Wunderlich N.C.
      • Beigel R.
      • Swaans M.J.
      • Ho S.Y.
      • Siegel R.J.
      Percutaneous interventions for left atrial appendage exclusion: options, assessment, and imaging using 2D and 3D echocardiography.
      intraprocedural,
      • Berti S.
      • Paradossi U.
      • Meucci F.
      • et al.
      Periprocedural intracardiac echocardiography for left atrial appendage closure: a dual-center experience.
      and postprocedural assessment of patients undergoing left atrial appendage occlusion device placement. Evaluation involves the use of both transthoracic and transesophageal echocardiography (with or without 3D), CT angiography, and, to a lesser extent, cardiac MR angiography. Intraprocedural evaluation involves the use of transesophageal echocardiography (with or without 3D), fluoroscopy, intracardiac echo, and transthoracic echo to screen for early procedural complications. Assessment after deployment of the device involves a transthoracic echo, which may be done prior to discharge. U.S. Food and Drug Administration–mandated surveillance at 45 days includes transthoracic echocardiography, which is rated as May Be Appropriate, and transesophageal echocardiography, which is rated as Appropriate. In long-term follow-up, both transthoracic echo (with or without 3D) and transesophageal echo (with or without 3D) are rated May Be Appropriate.

      8. Conclusions

      This document assesses a wide array of imaging modalities available to the clinician in the evaluation of patients with non-VHD. Presented here is a broad spectrum of clinical scenarios in such patients. Some of these scenarios replicate those of prior documents, but many are new, specifically structural interventions that were not in the armamentarium of clinicians when prior, single-modality documents were published. The writing group especially wants to thank the rating panel, which helped us clarify the language of many scenarios and which, with focused rerating of a handful of indications, helped us to create a document that is consistent with and supported by medical evidence and helps guide clinicians where evidence is incomplete.
      We believe the multimodality approach more closely replicates clinical decision making and will be useful. Future documents will not provide single-source guidance for appropriateness of a single imaging modality in all disease states. Echocardiography indications, for example, will be spread across complimentary documents such as the multimodality stable ischemic heart disease AUC, the valvular heart disease multimodality document, the current document, and the multimodality imaging in pre-operative evaluation document, which is under development.
      As with prior documents, the evaluation is a product of current ACC/AHA clinical practice guidelines where available, subspecialty societal guidelines, consensus documents, single-center studies, and expert consensus. ACC/AHA guidelines are considered the highest level of evidence for the purpose of these efforts but are not available for all scenarios. The modalities are not to be considered in a rank order and may be used relative to individual patient circumstances and the balance of risk versus benefit. Accordingly, a study rated May Be Appropriate should not be denied reimbursement in lieu of one rated Appropriate. In some circumstances, a study ranked Rarely Appropriate may be clinically useful if properly documented.
      The American College of Cardiology is recognized as a Qualified Provider-Led Entity in the crafting of these documents and is so recognized by the Center for Medicare and Medicaid Services (CMS). This process demands a rigorous evidentiary review and a commitment to periodic updates.

      ACC President and Staff

      C. Michael Valentine, MD, FACC, President
      Timothy W. Attebery, Chief Executive Officer, MBA, FACHE
      William J. Oetgen, MD, FACC, Executive Vice President, Science, Education, Quality, and Publishing
      Joseph M. Allen, MA, Team Leader, Clinical Policy and Pathways
      Amy Dearborn, Team Leader, Pathways and Appropriate Use Criteria
      Marίa Velásquez, Senior Research Specialist, Appropriate Use Criteria
      Amelia Scholtz, PhD, Publications Manager, Science, Education, Quality, and Publishing

      Appendix A. ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: Members of the Writing Group, Rating Panel, Indication Reviewers, and AUC Task Force—Relationships With Industry and Other Entities (Relevant)

      Tabled 1
      ParticipantEmploymentRepresentingConsultantSpeakers bureauOwnership/partnership/principalPersonal researchInstitutional, organizational, or other financial benefitExpert witness
      Writing Group
      John U. DohertyThomas Jefferson University—Professor of MedicineACCNoneNoneNoneNoneNoneNone
      Smadar KortStony Brook University Medical Center—Clinical Professor of MedicineASENoneNoneNoneNoneNoneNone
      Roxana MehranMount Sinai Medical Center—Professor of MedicineSCAI
      • AstraZeneca Pharmaceuticals
      • Boston Scientific
      • Cardiovascular Systems Inc
      • Medscape
      • Merck & Co., Inc.
      • Shanghai Bracco Sine Pharmaceutical Corp.
      • The Medicines Company
      NoneNone
      • Abbott Vascular
        No financial benefit.
      • AstraZeneca Pharmaceuticals
        No financial benefit.
      • AUM Cardiovascular
        No financial benefit.
      • Bayer Healthcare Pharmaceuticals
        No financial benefit.
      • Beth Israel Deaconess Medical Center
        No financial benefit.
      • Bristol-Myers Squibb
        No financial benefit.
      • CSL Behring
        No financial benefit.
      • Eli Lilly/DSI
        No financial benefit.
      • Medtronic
        No financial benefit.
      • Novartis Pharmaceuticals
        Significant relationship.
      • OrbusNeich
        Significant relationship.
      • The Medicines Company
        No financial benefit.
      • Watermark Research Partners
        No financial benefit.
      • Janssen Pharmaceuticals, Inc. (Executive Committee)
      • Osprey Medical (Executive Committee)
      • WebMD, (Interviews)
      • Wiley Blackwell Publishing Company, (Book Royalty)
      • SCAI, (Officer)
      None
      Paul SchoenhagenCleveland Clinic Foundation—Staff, Department of Diagnostic Radiology, Department of CV Imaging, and Department of CV MedicineSCCTNoneNoneNoneNoneNoneNone
      Prem SomanUniversity of Pittsburgh Medical Center–Nuclear Cardiology Suite—Director of Nuclear CardiologyASNCNoneNoneNone
      • Astellas Pharma US–Noninvasive Imaging (Co-PI)
        Significant relationship.
      NoneNone
      Rating Panel
      Gregory J. Dehmer, ModeratorCarilion Cardiovascular Institute—Director, Quality and OutcomesN/A
      • Member—FDA Circulatory System Devices Panel of the Medical Devices Advisory
      • Past President—Society for Cardiovascular Angiography and Interventions
      NoneNoneNoneNoneNone
      Thomas M. BashoreDuke University Medical Center—Professor of Medicine, Division of Cardiology, Senior Vice ChiefACCNoneNoneNoneNoneNoneNone
      Nicole M. BhaveUniversity of Michigan School of Medicine—Cardiovascular Center, Assistant ProfessorACCNoneNoneNoneNoneNoneNone
      Dennis A. CalnonOhio Health Heart and Vascular Physicians—Riverside Methodist Hospital, Cardiac Imaging, DirectorASNC
      • Navidea Biopharmaceuticals
      NoneNoneNoneNoneNone
      Blase CarabelloEast Carolina University—Chief, Division of CardiologyACCNoneNoneNone
      • Edwards (DSMB)
        No financial benefit.
      NoneNone
      John V. ConteJohns Hopkins School of Medicine, Division of Cardiac Surgery—Director of Mechanical Circulatory Support

      Professor of Surgery
      STSNoneNoneNone
      • Medtronic
      • Medtronic (Surgical Advisory Board)
      • Medtronic
        Clinical Trial Enroller.
      • Boston Scientific
        Clinical Trial Enroller.
      None
      Timm DickfeldUniversity of Maryland School of Medicine—Professor, Director of Electrophysiology ResearchHRS
      • Abbott
        Significant relationship.
      • Biosense
      • St. Jude Medical
      NoneNone
      • Biosense
        Significant relationship.
      • General Electric
        Significant relationship.
      • Impulse Dynamics (Event Adjudication Committee)
      • Siemens–ECG Reading
        Significant relationship.
      • Plaintiff, Perforation, 2015
      • Plaintiff, SCD Case, 2015
      Dan EdmundowiczTemple University Hospital—Chief, Section of Cardiology, Vice Chair of Program Development, Professor of Medicine, Department of MedicineACCNoneNoneNoneNoneNoneNone
      Victor A. FerrariHospital of the University of Pennsylvania—Professor of Medicine; Associate Director, Cardiovascular ImagingACCNoneNoneNoneNone
      • Journal of Cardiovascular Magnetic Resonance (Officer)
        No financial benefit.
      None
      Michael E. HallUniversity of Mississippi Medical Center—Assistant Professor, Department of Radiology, Physiology and BiophysicsACCNoneNoneNoneNoneNoneNone
      Brian GhoshhajraMassachusetts General Hospital—Service Chief, Cardiovascular Imaging, Department of Radiology Program; Director, Cardiac Imaging Fellowship, Department of RadiologySCCT
      • Medtronic
        Significant relationship.
      • Siemens Healthcare
      • Research and Development Institutional Collaboration
      NoneNoneNoneNoneNone
      Praveen MehrotraThomas Jefferson University Hospital—Assistant Professor of Medicine, Echocardiography DirectorACCNoneNoneNoneNoneNoneNone
      Tasneem Z. NaqviMayo School of Medicine—Professor of Medicine, Mayo Clinic, Echocardiography Director; Department of Cardiovascular Disease; ConsultantACCNoneNoneNone
      • Medtronic
        No financial benefit.
      • St. Jude Foundation
        No financial benefit.
      • Program Director, Advanced Echocardiography Fellowship
        No financial benefit.
      • American Society of Echocardiography (Board Member)
      None
      T. Brett ReeceUniversity of Colorado Cardiothoracic Surgery—Associate Professor, Cardiothoracic Surgery; Director, Comprehensive Thoracic Aortic ProgramAATSNoneNoneNoneNone
      • Bard
        Clinical Trial Enroller.
      • Griols
        Clinical Trial Enroller.
      None
      Randall C. StarlingCleveland Clinic Foundation—Head of Heart Failure and Cardiac Transplant Medicine; Medical Director, Kaufman Center for Heart Failure; Staff Cardiologist, Robert and Suzanne Tomsich Department of Cardiovascular Medicine; Vice Chairman, Cardiovascular Medicine and Operations
      • Medtronic
      • Novartis
      None
      • St. Jude Medical
      • BioControl (PI)
      • Cardiac Dimensions (PI)
      • HeartWare (PI)
        No financial benefit.
      • Medtronic (PI)
      • Novartis (PI)
        Significant relationship.
      • St. Jude Medical (PI)
        No financial benefit.
      NoneNone
      Molly SzerlipBaylor Scott and White—The Heart Hospital Plano, Medical Director, Inpatient and Outpatient Valve Program; Director, Structural Heart FellowshipSCAI
      • Edwards Lifesciences
      • Medtronic
      • Abiomed
      • Edwards Lifesciences
      None
      • Medtronic
      • Bayer
        Clinical Trial Enroller.
      • Edwards
        Clinical Trial Enroller.
      • Medtronic
        Clinical Trial Enroller.
      None
      Wendy S. TzouUniversity of Colorado School of Medicine—Cardiac Electrophysiology Section, Division of Cardiology; Associate Professor of MedicineAHA
      • Abbott Laboratories
      • Biosense Webster
      • Boston Scientific
      • Medtronic
      NoneNoneNoneNoneNone
      John B. WongTufts University School of Medicine— Professor of MedicineACC
      • Informed Medical Decisions Foundation: Healthwise
      • Annals of Internal Medicine (American College of Physicians)
      NoneNone
      • Patient-Centered Outreach Institute–Cardiothoracic Surgery Congenital Heart Disease and Pediatric Cardiology Invasive CV Angio and Interventions Prevention Stable Ischemic Heart Disease (PI)
        Significant relationship.
      • AMA Physician Consortium for Performance Improvement (Member, Co-Chair)
      None
      Reviewers
      Gurusher S. PanjrathGeorge Washington University—Director, Heart Failure and Mechanical Support ProgramACC–Heart Failure and Transplant Section Leadership CouncilNone
      • Amgen, Inc.
        Significant relationship.
      NoneNone
      • Alnylam
        Clinical Trial Enroller.
      • CVRx
        Clinical Trial Enroller.
      None
      Uma ValetiUniversity of Minnesota—StaffACC–Heart Failure and Transplant Section Leadership CouncilNoneNoneNone
      • Bayer—Noninvasive Imaging (Co-PI)
      • Cardiovascular (DSMB)
      • Global Genomics Group–Noninvasive Imaging (Co-PI)
      • Siemens–Noninvasive Imaging (Co-PI)
        Significant relationship.
      NoneNone
      Daniel S. BermanCedars-Sinai Medical Center, Department of Imaging—Director, Cardiac ImagingACC–Imaging Council
      • Cedars Sinai Medical Center—Software Royalties
        Significant relationship.
      • General Electric
      NoneNone
      • HeartFlow
        Significant relationship.
      • Siemens Medical Solutions
        Significant relationship.
      NoneNone
      Warren J. ManningBeth Israel Deaconess Medical Center, Division of Cardiology— Professor of Medicine and RadiologyASE
      • Merck and Company
      None
      • General Electric
        Significant relationship.
      • Philips Medical Systems—Noninvasive Imaging (Co-PI)
        Significant relationship.
      • Samsung Electronics
        Significant relationship.
      • Plaintiff, Endocarditis, 2016
      • Plaintiff, Endocarditis, 2015
      Sean G. HughesVanderbilt University Medical Center, Williamson Medical Center—Staff, CardiologistASENoneNoneNoneNoneNoneNone
      Nelson B. SchillerUniversity of California, San Francisco—Professor of Medicine, Radiology, and AnesthesiaASENone
      • General Electric Healthcare
      • Lantheus
      NoneNoneNone
      • Plaintiff, Missed diagnosis of paraprosthetic leak, 2015
      Harikrishna TandriJohns Hopkins Hospital—Co-Director, Arrhythmogenic Right Ventricular Dysplasia Program; Associate Professor of MedicineHRS
      • St. Jude Medical
      NoneNoneNoneNoneNone
      Rajan A. G. PatelUniversity of Queensland—Senior Lecturer, John Ochsner Heart and Vascular Center, Ochsner Medical Center— Interventional Cardiology SectionSCAINoneNoneNoneNone
      • Aastrom
        Clinical Trial Enroller.
      • Abbott
        Clinical Trial Enroller.
      • American College of Cardiology (Imaging Committee)
      • NHLBI
        Clinical Trial Enroller.
      • SCAI Carotid Stent (Committee)
      • SCAI Publications (Committee)
      None
      Jeffrey A. BrinkerJohns Hopkins Hospital—Professor of MedicineSCAINoneNoneNoneNoneNoneNone
      Raymond Y. KwongBrigham & Women’s Hospital Medicine, Cardiovascular Division—Instructor of MedicineSCMRNoneNoneNone
      • Alnylam Pharmaceutical (PI)
        Significant relationship.
      • Society for Cardiovascular Magnetic Resonance (Officer)
      None
      Andrew J. PowellChildren’s Hospital, Boston, Department of Cardiology—Associate in Cardiology, Associate Professor of PediatricsSCMRNoneNoneNoneNoneNoneNone
      Joseph WuStanford University School of Medicine—Director, Stanford Cardiovascular Institute; Professor, Department of Medicine/ CardiologyAHANoneNone
      • Stem Cell Theranostics
        No financial benefit.
      NoneNoneNone
      Harold LittUniversity of Pennsylvania—Associate Professor of Radiology; Chief, Cardiovascular Imaging Section, Department of Radiology; Director, Center for Advanced Computed Tomography Imaging Sciences; Fellowship Director, Cardiovascular Imaging FellowshipAHANoneNoneNone
      • American College of Radiology Imaging Network—Noninvasive Imaging (PI)
        Significant relationship.
      • HeartFlow—Noninvasive Imaging (Co-PI)
        Significant relationship.
      • Siemens Medical Solutions—Noninvasive Imaging (Co-PI)
        Significant relationship.
      None
      • Defendant, Chest mass imaging 2016
      Thomas C. GerberMayo Clinic—Professor of Medicine and RadiologyAHANoneNoneNoneNone
      • American Journal of Radiology (Officer)
      • Mayo Clinic Proceedings (Officer)
      None
      Amish RavalUniversity of Wisconsin School of Medicine—Associate ProfessorAHANoneNoneNoneNoneNoneNone
      Marcelo F. DiCarliBrigham and Women’s Hospital—Chief of Nuclear Medicine; Harvard Medical School—Assistant Professor of Radiology and MedicineSNMMINoneNoneNone
      • NHLBI T32HL094301—Noninvasive Imaging (PI)
        Significant relationship.
      • Spectrum Dynamics—Noninvasive Imaging (Co-PI)
        Significant relationship.
      • AHA Circulation: Cardiovascular Imaging (Editor)
      • NIH
        Significant relationship.
      • Spectrum Dynamics
        Significant relationship.
      None
      This table represents relevant relationships of participants with industry and other entities that were reported by reviewers at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$5,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. In addition, to ensure complete transparency, a full list of disclosure information—including relationships not pertinent to this document—is available as an Online Appendix. Please refer to http://www.acc.org/guidelines/about-guidelines-and-clinical-documents/relationships-with-industry-policy for definitions of disclosure categories or additional information about the ACC Disclosure Policy for Writing Committees.
      ACC, American College of Cardiology; AATS, American Association for Thoracic Surgery; AHA, American Heart Association; ASE, American Society of Echocardiography; ASNC, American Society for Nuclear Cardiology; HRS, Heart Rhythm Society; SCAI, Society for Cardiovascular Angiography and Interventions; SCCT, Society of Cardiovascular Computed Tomography; SCMR, Society for Cardiovascular Magnetic Resonance; STS, Society of Thoracic Surgeons; AUC, Appropriate Use Criteria; AMA, American Medical Association; CV, cardiovascular; DSMB, Data and Safety Monitoring Board; NHLBI, National Heart, Lung, and Blood Institute; PI, Principal Investigator; SCA, Society of Cardiovascular Anesthesiologists; SNMMI, Society for Nuclear Medicine and Molecular Imaging.
      No financial benefit.
      Significant relationship.
      Clinical Trial Enroller.

      References

        • Doherty J.U.
        • Kort S.
        • Mehran R.
        • et al.
        ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2017 appropriate use criteria for multimodality imaging in valvular heart disease: a report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons.
        J Am Coll Cardiol. 2017; 70: 1647-1672
        • Patel M.R.
        • Spertus J.A.
        • Brindis R.G.
        • et al.
        ACCF proposed method for evaluating the appropriateness of cardiovascular imaging.
        J Am Coll Cardiol. 2005; 46: 1606-1613
        • Hendel R.C.
        • Lindsay B.D.
        • Allen J.M.
        • et al.
        ACC appropriate use criteria methodology: 2018 update.
        J Am Coll Cardiol. 2018; 71: 935-948
        • Fitch K.
        • Bernstein S.J.
        • Aguilar M.D.
        • et al.
        The RAND/UCLA Appropriateness Method User’s Manual.
        RAND, Arlington, Va2001
        • Hirshfeld Jr., J.W.
        • Ferrari V.A.
        • Bengel F.M.
        • et al.
        2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents.
        J Am Coll Cardiol. 2018; 71: e283-e351
        • Fihn S.D.
        • Blankenship J.C.
        • Alexander K.P.
        • et al.
        2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons.
        J Am Coll Cardiol. 2014; 64: 1929-1949
        • Nishimura R.A.
        • Otto C.M.
        • Bonow R.O.
        • et al.
        2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines.
        J Am Coll Cardiol. 2014; 63: e57-e185
        • Nishimura R.A.
        • Otto C.M.
        • Bonow R.O.
        • et al.
        2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        J Am Coll Cardiol. 2017; 70: 252-289
        • Hunt S.A.
        • Abraham W.T.
        • Chin M.H.
        • et al.
        2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation.
        J Am Coll Cardiol. 2009; 53: e1-e90
        • Wolk M.J.
        • Bailey S.R.
        • Doherty J.U.
        • et al.
        ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons.
        J Am Coll Cardiol. 2013; 63: 380-406
        • Hendel R.C.
        • Patel M.R.
        • Kramer C.M.
        • et al.
        ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging.of cardiovascular imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology.
        J Am Coll Cardiol. 2006; 48: 1475-1497
        • Taylor A.J.
        • Cequeira M.
        • Hodgson J.M.
        • et al.
        ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance.
        J Am Coll Cardiol. 2010; 56: 1864-1894
        • Hendel R.C.
        • Berman D.S.
        • Di Carli M.F.
        • et al.
        ACCF/ASNC/ACR/AHA/ASE/ SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine.
        J Am Coll Cardiol. 2009; 53: 2201-2229
        • Douglas P.S.
        • Garcia M.J.
        • Haines D.E.
        • et al.
        ACCF/ASE/AHA/ASNC/ HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance.
        J Am Coll Cardiol. 2011; 57: 1126-1166
        • Greenland P.
        • Alpert J.S.
        • Beller G.A.
        • et al.
        2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
        J Am Coll Cardiol. 2010; 56: e50-e103
        • Gersh B.J.
        • Maron B.J.
        • Bonow R.O.
        • et al.
        2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
        J Am Coll Cardiol. 2011; 58: e212-e260
        • Plana J.C.
        • Galderisi M.
        • Barac A.
        • et al.
        Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        J Am Soc Echocardiogr. 2014; 27: 911-939
        • Yancy C.W.
        • Jessup M.
        • Bozkurt B.
        • et al.
        2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
        J Am Coll Cardiol. 2013; 62: e147-e239
        • Maron B.J.
        • Zipes D.P.
        • Kovacs R.J.
        • et al.
        • on behalf of the American Heart Association Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, Council on Cardiovascular Disease in the Young
        • Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and the American College of Cardiology
        Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American College of Cardiology.
        J Am Coll Cardiol. 2015; 66: 2343-2349
        • Hiratzka L.F.
        • Bakris G.L.
        • Beckman J.A.
        • et al.
        2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine (developed in collaboration with the American College of Emergency Physicians).
        J Am Coll Cardiol. 2010; 55: e27-e129
        • Warnes C.A.
        • Williams R.G.
        • Bashore T.M.
        • et al.
        ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Adults With Congenital Heart Disease).
        J Am Coll Cardiol. 2008; 52: e143-e263
        • Cheitlin M.D.
        • Armstrong W.F.
        • Aurigemma G.P.
        • et al.
        ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines on the Clinical Application of Echocardiography).
        J Am Coll Cardiol. 2003; 42: 954-970
        • Priori S.G.
        • Blomstrom-Lundqvist C.
        • Mazzanti A.
        • et al.
        2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology.
        EP Eurospace. 2015; 17: 1601-1687
        • January C.T.
        • Wann L.S.
        • Alpert J.S.
        • et al.
        2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society.
        J Am Coll Cardiol. 2014; 64: e1-e76
        • Bouas-Mosquera A.
        • Peteiro J.
        • Broullon F.
        • et al.
        Prognostic value of exercise echocardiography in patients with atrial fibrillation.
        Eur J Echocardiogr. 2010; 11: 346-351
        • Moya A.
        • Sutton R.
        • Ammirati F.
        • et al.
        • Task Force for the Diagnosis and Management of Syncope, European Society of Cardiology
        Guidelines for the diagnosis and management of syncope—update 2009.
        Eur Heart J. 2009; 30: 2631-2671
        • Porter T.R.
        • Shillcutt S.K.
        • Adams M.S.
        • et al.
        Guidelines for the use of echocardiography as a monitor for therapeutic interventions in adults: a report from the American Society of Echocardiography.
        J Am Soc Echocardiogr. 2015; 28: 40-56
        • Spencer K.
        • Kimura B.J.
        • Korcarz C.E.
        • et al.
        Focused cardiac ultrasound: recommendations from the American Society of Echocardiography.
        J Am Soc Echocardiogr. 2013; 26: 567-581
        • Silvestry F.E.
        • Kerber R.E.
        • Brook M.M.
        • et al.
        Echocardiography-guided interventions.
        J Am Soc Echocardiogr. 2009; 22: 213-231
        • Gorcsan III, J.
        • Abraham T.
        • Agler D.A.
        Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting: a report from the American Society of Echocardiography Dyssynchrony Writing Group.
        J Am Soc Echocardiogr. 2008; 21: 191-213
        • Stainback R.F.
        • Estep J.D.
        • Agler D.A.
        • et al.
        • for the American Society of Echocardiography
        Echocardiography in the management of patients with left ventricular assist devices: recommendations of the American Society of Echocardiography.
        J Am Soc Echocardiogr. 2015; 28: 853-909
        • Klocke F.J.
        • Baird M.G.
        • Lorell B.H.
        • et al.
        ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Radionuclide Imaging).
        J Am Coll Cardiol. 2003; 42: 1318-1333
        • Nagueh S.F.
        • Bierig S.M.
        • Budoff M.J.
        • et al.
        Guidelines and standards. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy.
        J Am Soc Echocardiogr. 2011; 24: 473-498
        • Youssef G.
        • Leung E.
        • Mylonas I.
        • et al.
        The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience.
        J Nucl Med. 2012; 53: 241-248
        • Nadel J.
        • Lancefield T.
        • Voskoboinik A.
        • Taylor A.J.
        Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 634-641
        • Ruberg F.L.
        • Berk J.L.
        Transthyretin (TTR) cardiac amyloidosis.
        Circulation. 2012; 126: 1286-1300
        • Fontana M.
        • Pica S.
        • Reant P.
        • et al.
        Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis.
        Circulation. 2015; 132: 1570-1579
        • Schwartz R.G.
        • Jain D.
        • Storozynsky E.
        Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively.
        J Nucl Cardiol. 2013; 20: 443-464
        • Plana J.C.
        • Galderisi M.
        • Barac A.
        • et al.
        Expert consensus for multimodality imaging: evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        J Am Soc Echocardiogr. 2014; 27: 911-939
        • Pristipino C.
        • Anzola G.P.
        • Ballerini L.
        • et al.
        Management of patients with patent foramen ovale and cryptogenic stroke: a collaborative, multidisciplinary, position paper: executive summary.
        Catheter Cardiovasc Interv. 2013; 82: 122-129
        • Osawa K.
        • Miyoshi T.
        • Morimitsu Y.
        • et al.
        Comprehensive assessment of morphology and severity of atrial septal defects in adults by CT.
        J Cardiovasc Comput Tomogr. 2015; 9: 354-361
        • Silvestry F.E.
        • Cohen M.S.
        • Armsby L.B.
        • et al.
        Guidelines for the echocardiographic assessment of atrial septal defect and patent foramen ovale: from the American Society of Echocardiography and Society for Cardiac Angiography and Interventions.
        J Am Soc Echocardiogr. 2015; 28: 910-958
        • Masoudi F.A.
        • Calkins H.
        • Kavinsky C.J.
        • et al.
        2015 ACC/HRS/SCAI left atrial appendage occlusion device societal overview.
        J Am Coll Cardiol. 2015; 66: 1497-1513
        • Wunderlich N.C.
        • Beigel R.
        • Swaans M.J.
        • Ho S.Y.
        • Siegel R.J.
        Percutaneous interventions for left atrial appendage exclusion: options, assessment, and imaging using 2D and 3D echocardiography.
        J Am Coll Cardiol Img. 2015; 8: 472-488
        • Berti S.
        • Paradossi U.
        • Meucci F.
        • et al.
        Periprocedural intracardiac echocardiography for left atrial appendage closure: a dual-center experience.
        J Am Coll Cardiol Intv. 2014; 7: 1036-1044

      Linked Article

      • Commentary: Beyond appropriate use, excluding the useless
        The Journal of Thoracic and Cardiovascular SurgeryVol. 157Issue 4
        • Preview
          The costs of delivering health care in the United States continue to escalate at alarming rates, with projections of health care representing 20% of gross domestic product by 2020.1 Although technology and medicolegal issues play significant roles, money spent on useless testing remains substantial, contributing as much as 20%-30% of wasted health care dollars.2,3 The reason for ordering these less beneficial tests is usually lack of awareness of test utility. The accompanying document is the second multidisciplinary document that attempts to address gaps in familiarity with optimal testing in nonvalvular heart disease.
        • Full-Text
        • PDF
        Open Archive