ADULT


https://doi.org/10.1016/j.jtcvs.2018.10.001


OBJECTIVE ASSESSMENT OF CLINICAL BENEFIT WITH MINISTERNOTOMY MORE IMPORTANT THAN ANECDOTAL CLINICAL EXPERIENCE OF SURGEONS

Reply to the Editor:

I wish to thank Drs Mori and Geirsson for their critical comments regarding my group’s manuscript on MiniStern Trial. Although at the outset I agree with some of their comments, I would like to address and explain some of their concerns about the conduct and findings of this trial.

This trial was conducted in the United Kingdom, where the national health care system (the National Health Service) is different from that in the United States. I therefore cannot comment as to why the duration of hospital stay in general is longer than the average duration of stay in the Society of Thoracic Surgeons database. In our study, however, we found that the average length of stay was slightly longer for patients in the ministernotomy (MS) group than in the full sternotomy (FS) group. In the United Kingdom, duration of hospital stay is influenced not only by medical factors but also by social factors related to patients.

We did not find any difference in duration of hospital stay between the groups, however, even when social reasons for delay in hospital discharge were excluded.

In the MiniStern Trial, fitness for discharge was assessed not only by the medical staff but also by physiotherapists who were independent of the trial. Nonrandomized observational studies are biased, because on many occasions discharge date is decided by the surgeon, who naturally will be keen to discharge patients early, thereby involuntarily inducing bias in the process.

The trial steering group had recommended and agreed on the standards of proctoring and training before surgeons recruited patients into this trial. The overall experience of surgeons in terms of number of FS and MS operations performed before recruitment into the trial is something that I agree is significantly different. In other words, surgeons were not performing aortic valve replacements in equal numbers through FS and MS before this trial. The rate of conversion of MS to FS in the trial, however, was under the accepted rate of 5%. Patients undergoing MS did not have excessive mortality, either. The rate of immediate postoperative complications, namely bleeding, stroke, or paraprosthetic regurgitation, did not show any significant difference between the groups either. Of course, bypass and crossclamp times were significantly longer in the MS group than in the FS group. This is the situation in multiple publications, even when very experienced minimal access surgeons have performed MS operations. I therefore believe that the “relative inexperience” of the surgeons performing MS cannot be a significant cause leading to the observations of this trial. During the statistical analysis of data, surgeon was considered as an independent variable, but there was no statistical significance noted.

FIGURE 1. MiniStern Trial observations. FS, Full sternotomy; MS, ministernotomy; CPB, cardiopulmonary bypass.
Nonrandomized database analysis cannot be considered superior to randomized, controlled trials because of the inherent bias in patient selection. As practicing surgeons, we all would agree that on most occasions we can identify an unsuitable candidate for MS and quite rightly proceed with FS. This will therefore lead to selection bias in such analyses.

The MiniStern Trial does not conclude that MS approach is inferior to FS for aortic valve replacement. Our conclusion is solely that although patient satisfaction is high among the MS group, we failed to demonstrate a reduction in hospital stay in the UK National Health Service practice after aortic valve replacement performed through MS relative to FS (Figure 1). Therefore, although we are a group of surgeons enthusiastic about minimal access cardiac surgery, we failed to provide objective evidence to claim superiority of the MS approach relative to the FS approach for performing aortic valve replacement.

Once again, I thank Drs Mori and Geirsson for their comments on our article.

Sukumaran K. Nair, FRCS(CTh)
Cardiac Surgery
Golden Jubilee National Hospital
Glasgow, UK

https://doi.org/10.1016/j.jtcvs.2018.11.083

MINIMALLY INVASIVE CARDIAC SURGERY PRESENTS CHALLENGES FOR DESIGN OF RANDOMIZED CLINICAL TRIALS

Reply to the Editor:

Cardiac surgery can provide excellent outcomes when performed through a conventional sternotomy. Nevertheless, the burden of sternotomy on functional recovery can last for weeks or even months. Efforts to accelerate recovery after sternal entry are warranted. Novel approaches that improve early sternal fixation have been shown to accelerate functional recovery. Minimizing or avoiding sternotomy by using minimally invasive approaches is another option that has gained clinical momentum and wide acceptance. The evidence for such approaches in comparison with conventional sternotomy, however, may be disproportionate to the growing adoption and enthusiasm amongst surgeons and patients alike. The recent randomized study by Nair and colleagues is an important addition to the literature.

As mentioned in Fedak’s accompanying editorial, perspectives on this recent study are predicted to be mixed, and the lack of observed benefits will be debated by enthusiasts and late adopters. In their letter, Mori and Geirsson provide a perspective. They stress the importance of surgical expertise in conducting minimally invasive cardiac surgery. They underscore the tight relationship between clinical outcomes and the experience of the expert operator. To support their argument, they provide a hypothetical figure depicting the expertise scale and 2 surgical techniques. We agree that there should be a positive correlation between a surgeon’s experience and clinical outcomes. Watching a trainee’s skills evolve with time is all the proof one needs to support this claim. We can also safely presume that experience and outcomes are enhanced by surgical volumes for individual surgeons and even programs.

Despite this relationship, validating new procedures still requires academic rigor and equipoise. Although operator experience may influence the results of a clinical trial, randomization should be capable of limiting the magnitude of such factors. We argue that the vast majority of experienced cardiac surgeons are so highly skilled that they can perform technical procedures with such consistency and high quality that technical skill would not present an independent variable predictive of functional recovery after cardiac surgery. In addition, if a surgical procedure is so technically complex that an experienced cardiac surgeon is unable to achieve reproducible and consistently high-quality outcomes, then we must question how much impact such an innovation may have once generalized to the wider community.

Furthermore, being pragmatic, can we ever really measure and determine an individual surgeon’s experience and underlying skill as it may relate to a specific clinical outcome? It has been said that we cannot measure what we cannot manage. We agree that robust study design in surgical trials must make efforts to account for operator experience and skills to provide a meaningful comparison. The best compromise may be the use of expertise-based trial designs that allow random assignment to operators in each arm with sufficient experience and expertise.

Nobuhisa Ohno, MD, PhD
Ali Fatehi Hassananabad, MD
Paul W. M. Fedak, MD, PhD, FRCS(C)
Department of Cardiovascular Surgery
Hyogo Prefectural Amagasaki General Medical Centre
Amagasaki, Japan
Section of Cardiac Surgery
Department of Cardiac Science