Does the lung nodule look aggressive enough to warrant a more extensive operation?

Michael Kuan-Yew Hsin, MBBChir, MA, FRCS(CTh), and David Chi-Leung Lam, MD, PhD, FRCP

Early-stage lung cancers often present as lung nodules on computed tomography (CT) scan of the thorax. Radiologic features of lung nodules that suggest malignancy include size, border, shape, and the presence of ground-glass component. However, none of these radiologic features have been found to indicate invasiveness of lung tumor.

Spread through air space (STAS) is a newly described lung cancer histologic pattern. In the current issue of the Journal, Toyokawa and colleagues report their series of lung cancer surgery with a focus on STAS and preoperative CT images. They showed that whether it was for lobectomy or sublobar resection, the presence of STAS was associated with worse survival outcomes. Tumors without ground-glass opacity (GGO) or those with a notch on CT correlate with STAS on histology. GGO negativity re-affirms previous findings by Shiono and Uruga.

The significance of notch positivity pattern on preoperative CT appears novel. The authors showed that for tumors that were GGO negative or notch positive, the odds ratio for presence of STAS was 2.91. For tumors with both absence of GGO and presence of a notch, the odds ratio for STAS was 5.01. There is a growing body of clinical evidence to support the negative prognostic implication when STAS is present. Indeed, notch and GGO may not be the only features that are of predictive or prognostic value in lung cancer. CT features, including the texture appearance, also could be quantified. Such quantitative parameters could be correlated in a linear and proportional fashion to the growth rate of tumor and even correlated with genomic characteristics, such as the presence of epidermal growth factor receptor mutations.

Toyokawa and colleagues clearly demonstrated the importance of integration among clinical, pathologic, and radiologic features. Further prospective evaluation and validation of the CT associations with STAS are warranted. Imaging phenotypes such as the presence of a notch or GGO may serve as surrogates for underlying tumor invasiveness. The presence of STAS or its representation by a notch on CT could be further evaluated as a marker for deep learning for formulations of computer algorithms that will pave the way for the application of artificial intelligence in predicting invasiveness of lung tumor, ultimately helping clinicians to stratify lung cancers and to select the appropriate surgical resection.

References

4. Yanagawa N, Shiono S, Endo M, Ogata SY. Tumor spread through air spaces is a useful predictor of recurrence and prognosis in stage I lung squamous cell carcinoma, but not in stage II and III. *Lung Cancer*. 2018;120:14-21.


