An implantable turbomechanical cavopulmonary assist device: Guarded optimism for harnessing the river to do upstream work

David P. Bichell, MD

Approximately 1700 Fontan procedures are performed annually in the United States, and 20-year survival is close to 90%. The inevitable price paid for the absent prepulmonary ventricle is cardiac and extracardiac organ disease, a growing health burden in a population that is growing in number and age. The development of mechanical cavopulmonary support for the failing Fontan, or more importantly, support suitable for early intervention to preempt Fontan failure altogether, is an ambitious but necessary pursuit. The most vexing challenges to a successful device today remain thrombosis and power source.

Pekkan and colleagues propose an ingenious new look at a power source, heretofore hidden in plain view, a solution that purports to eliminate the enormous problems of battery power, drive line, and heat dissipation. The prototype is an implantable turbomechanical pump that extracts work from the systemic ventricle through an aorto-atrial turbine to power an integrated impeller pump in the cavopulmonary circulation. The device evokes the design of Marcus Vitruvius Pollio, Roman engineer of the first century BC, of a water-lifting machine that extracts work from a river-driven turbine to power an integrated Archimedes pump to carry water uphill.

Fontan failure does not mean systemic ventricular failure. At long-term follow-up, most Fontans have normal systemic ventricular function and the extraction of systemic ventricular work to augment the pulmonary circuit is an appealing and logical concept. The authors theorize of their device that even if power transmission efficiency is only 50%, and the aorto-atrial turbine steals only 5% of aortic flow, up to 5 mm Hg pressure diminution in the venous circulation is possible.

Power storage and transfer are theoretically solved by this elegant prototype that requires no drive line and no battery by harnessing the available power of the nearby systemic river to do work upstream. The in vitro model shows proof of concept. Many steps remain before translation to a working biologic system, but there is a big interest in seeing this innovative concept carried to in vivo testing.
References