“RIGHT VENTRICLE LOOKS BAD.” “NO, IT DOESN’T.” “YES, IT DOES.”

Reply to the Editor:

The title of our letter reflects a common refrain heard while reviewing echocardiograms during our multidisciplinary mechanical circulatory assist device meetings. Although echocardiograms are an essential component of patient evaluation and management both before and after left ventricular assist device implantation, there is no objective or widely accepted echocardiographic assessment of right ventricular (RV) function. We agree with Zochios and Protopapas in advocating for a better incorporation of echocardiography in this regard.

Previous attempts to incorporate echocardiographic parameters into a predictive RV failure model have been unsuccessful. This failure is in part because other clinical indicators, such as end-organ function or preoperative mechanical support, have demonstrated greater predictive power when incorporated into a statistical model. In addition, although the risk score by Fitzpatrick and colleagues includes severe preoperative RV dysfunction as seen on echocardiography, Fitzpatrick and colleagues acknowledge that this is not an objective measure. Ideally, we would have a simple and intuitive echocardiographic parameter (akin to ejection fraction for left ventricular function) that strongly correlates with RV failure after left ventricular assist device support. Our current lack of such a parameter suggests that there is an opportunity for us to achieve better understanding of the complex nature of RV anatomy and physiology and then to develop a novel metric through the use of modern imaging modalities.

Current 2-dimensional echocardiographic methods for the quantitative evaluation of RV contractility, such as fractional area change, tricuspid annular plane systolic excursion, and peak systolic tissue velocity of the RV lateral wall, have limitations. Fractional area change does not necessarily represent the ejection fraction of the entire RV, especially in the setting of significant tricuspid regurgitation. Tricuspid annular plane systolic excursion and tissue Doppler parameters assume that the function of a single segment represents the function of the entire RV, and both measurements are angle dependent. Although 3-dimensional echocardiography allows the direct measurement of RV volume without relying on geometric assumptions, it remains limited by the imaging quality of RV borders and by relatively low temporal and spatial resolutions. Assessment of tricuspid valve morphology may also add valuable information, but this is yet another isolated anatomic metric.

Studying the dynamic interventricular interaction may better discriminate patients at high risk for RV failure. For example, gradual deterioration of left ventricular preload and stroke volume often corresponds to worsening right-sided congestion, all of which can be identified on echocardiography. In addition, the latest software is promising in that it provides fast, reproducible, and accurate RV imaging.

Despite the concerns described here, it is important to acknowledge that chronic RV failure is a clinical process that manifests through prolonged venous hypertension and insidious end-organ dysfunction, the degree of which dictates each patient’s prognosis. Any attempt to correlate a clinical “snapshot,” such as the information captured by a single echocardiographic study, is a tough task, if not an exercise in futility.

Masahiko Ando, MD, PhD, MPH
Koki Nakamishi, MD, PhD
Marisa Cevasco, MD
Koji Takeda, MD, PhD
Hiroo Takayama, MD, PhD
Divisions of Cardiothoracic and Vascular Surgery and Cardiology Columbia University Medical Center New York, NY

References

http://dx.doi.org/10.1016/j.jtcvs.2017.08.032