Wrinkles, folds and calcifications: Reduced durability after transcatheter aortic valve-in-valve replacement

Herko Grubitzsch, MD, PhD, a Marco Galloni, MSc, b,c and Volkmar Falk, MD, PhD a

From the aKlinik für Kardiologische Chirurgie, Charité-Universitätsmedizin Berlin, Berlin, Germany; the bDipartimento di Scienze Veterinarie, Laboratorio di Biomateriali, Università degli Studi di Torino; and cLife and Device Srl, Turin, Italy.

Disclosures: H.G. has received lecture fees from Sorin Biomedica. M.G. has received grants for explanted valve studies from Sorin Biomedica. V.F. is principal investigator of the Biovalve Study sponsored by Biotronik and the Respond Study sponsored by Boston Scientific, received industry funding (CHF 110.000) by Medtronic (Engager Feasibility and Pivotal Trial) from 2010 to 2015, and has received lecture fees.

Received for publication June 9, 2016; revisions received Aug 1, 2016; accepted for publication Aug 6, 2016; available ahead of print Sept 21, 2016.

Address for reprints: Herko Grubitzsch, MD, PhD, Charité-Universitätsmedizin Berlin, Campus Charité Mitte Klinik für Kardiologische Chirurgie Charité-Platz 1, 10117 Berlin, Germany (E-mail: herko.grubitzsch@charite.de).

J Thorac Cardiovasc Surg 2017;153:266-8
0022-5223/$36.00
Copyright © 2016 by The American Association for Thoracic Surgery
http://dx.doi.org/10.1016/j.jtcvs.2016.08.018

Transcatheter valve-in-valve implantation is an acceptable alternative therapy for failed aortic or mitral bioprostheses in selected patients.1-3 With improved survival, durability of transcatheter valves becomes increasingly important because early structural failure frequently requires complex surgery.4

Figure 1 shows a self-expandable transcatheter aortic valve (CoreValve, 23 mm; Medtronic, Minneapolis, Minn) implanted through transfemoral access in a stented bioprosthesis (Sorin Mitroflow, 21 mm; LivaNova PLC, London, United Kingdom) 3 years previously (Figure 1, A, and Video 1), leading to an effective aortic valve area of 1.5 cm2 and a reduction of the mean transvalvular gradient from 50 to 31 mm Hg initially. This valve was explanted (Figure 1, B, CoreValve-Mitroflow-corpus) because of severe aortic valve stenosis. Effective orifice area of the valve was 0.8 cm2 (mean transvalvular gradient, 48 mm Hg), as determined by preoperative echocardiography. The following findings were revealed by structured examination of the explanted transcatheter valve. Wrinkled pericardium at the outflow aspect (Figure 1, B) and inflow aspect (Figure 1, C) of the prosthesis, an ovalized, noncircular cross-sectional profile (Figure 1, D), and deep folds at each leaflet (Figure 1, B, C, and D) were indicative of an incomplete prosthesis expansion. Radiographic examination demonstrated multiple calcifications at all leaflets (Figure 1, D). Apparently, deposition of calcium started within the leaflets (Figure 1, E); these deposits evolved into vegetating calcifications (Figure 1, B and C) and were present in all leaflets at the inflow side (Figure 1, C) and in 2 of 3 leaflets at the outflow side (Figure 1, B). Altered collagen bundles, a bubbly tissue texture, and pericardial delamination were associated with leaflet folds (Figure 1, F) and may represent early stages of bioprosthetic degeneration.

Because of the risk of accelerated structural degeneration, incomplete prosthesis expansion as a result of oversizing has to be prevented when performing transcatheter valve-in-valve procedures, especially for failed stented bioprostheses in the aortic position. The true internal diameter should be used for selecting an appropriate transcatheter heart valve device.5

References
FIGURE 1. Early structural failure after transcatheter aortic valve-in-valve replacement. A, Section of patient’s chest radiograph showing a 23-mm Core Valve transcatheter valve (Medtronic, Minneapolis, Minn) within a 21-mm Mitroflow conventional stented bioprosthesis (LivaNova PLC, London, United Kingdom). B, The explanted CoreValve-Mitroflow-corpus presenting pericardial folds and vegetating calcifications at the outflow aspects. C, Wrinkled pericardium and calcifications at the inflow aspect of the explanted CoreValve prosthesis. D, Radiographic examination demonstrates an ovalized, noncircular cross-sectional profile of the transcatheter valve within the stented bioprosthesis, as well as multiple calcifications at all leaflets of the CoreValve prosthesis. E, Alizarin red staining of a leaflet fold with intrinsic calcium nodule (3-fold magnification). F, Hematoxylin-eosin staining of a leaflet fold showing homogenized and locally disrupted collagen bundles, a bubbly tissue texture, and pericardial delamination (20-fold magnification).
EDITORIAL COMMENTARY

A leap of faith from association to causation

Fraser D. Rubens, MD, MSc, FACS, FRCSC

From the Department of Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.

Disclosures: Author has nothing to disclose with regard to commercial support.

Received for publication Oct 5, 2016; accepted for publication Oct 5, 2016; available ahead of print Sept 21, 2016.

Address for reprints: Fraser D. Rubens, MD, MSc, FACS, FRCSC, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, Ontario K1Y 4W7, Canada (E-mail: frubens@ottawaheart.ca).


0022-5223/$36.00

Copyright © 2016 by The American Association for Thoracic Surgery

http://dx.doi.org/10.1016/j.jtcvs.2016.10.028

One of the responsibilities in the oversight of medical academic journals is to occasionally draw the reader’s attention to the clear criteria of disease causation. Causation and association are not the same, and the implications of the findings in the two areas are distinctly different in terms of our call to action. True causation mandates that there must be temporal association between the disease and the putative factor, as well as biologic plausibility and coherence whereby the relationship between the two agrees with our current knowledge of the natural history or biology of the disease.1 The report in this issue of the Journal by Grubitzsch and colleagues2 describes an interesting

VIDEO 1. Fluoroscopy demonstrating the degenerated 21-mm Mitroflow prosthesis (LivaNova PLC, London, United Kingdom) and the valve-in-valve procedure with a 23-mm CoreValve prosthesis (Medtronic, Minneapolis, Minn). Video available at: http://www.jtcvsonline.org/article/S0022-5223(16)31037-6/addons.

Cause and effect in medicine.

Central Message

Readers must clearly distinguish between evidence of causation and association before changing practice, but this does not excuse them from the responsibility of being cautious when warned.

See Article page 266.