Intravenous acetaminophen analgesia after cardiac surgery: A randomized, blinded, controlled superiority trial

Negmeldeen F. Mamoun, MD, PhD,a,b Peirong Lin, MD,b Nicole M. Zimmerman, MS,b,c Edward J. Mascha, PhD,b,c Stephanie L. Mick, MD,d Steven R. Insler, DO,a,b Daniel I. Sessler, MD,b and Andra E. Duncan, MD,a,b

ABSTRACT

Background: Pain after cardiac surgery traditionally has been controlled by intravenous opioids and nonsteroidal antiinflammatory drugs. An intravenous analgesic with fewer adverse effects is needed. Therefore, we tested the primary hypothesis that intravenous acetaminophen is more effective than placebo for pain management, which was defined a priori as superior on either pain intensity score and/or opioid consumption and not worse on either.

Methods: In this single-center, double-blind trial, 147 patients having cardiac surgery via median sternotomy were randomized to receive either 1 g of intravenous acetaminophen (73 patients) every 6 hours for 24 hours or comparable placebo (74 patients) starting in the operating room after sternal closure. Cumulative opioid consumption (in morphine equivalents) and pain intensity scores (on a 0-10 Numeric Rating Scale) were measured at 4, 6, 8, 12, 16, 20, and 24 hours after surgery. We estimated ratio of mean opioid consumption by using multivariable linear regression (noninferiority delta = 1.15) and pain score difference by using repeated measures regression (noninferiority delta = 1).

Results: Acetaminophen was superior to placebo on mean pain intensity scores and noninferior on opioid consumption, with estimated difference in mean pain (95% confidence interval) of −0.90 (−1.39, −0.42), P < .001 (superior), and estimated ratio of means in opioid consumption (90% confidence interval) of 0.89 (0.73-1.10), P = .28 (noninferior; not superior).

Conclusions: Intravenous acetaminophen reduced pain after cardiac surgery, but not opioid consumption. Intravenous acetaminophen can be an effective analgesic adjunct in patients recovering from median sternotomy. (J Thorac Cardiovasc Surg 2016;152:881-9)

Multimodal analgesic strategies depend on the synergistic effects of various classes of analgesics. Combining several agents thus permits reductions in individual drug doses and consequent adverse effects. The World Health Organization’s Pain Ladder recommends administering nonopioid analgesics before adding opioids if warranted by the intensity of postoperative pain.1 Similarly, the American Society of Anesthesiologists recommends stepwise...
multimodal analgesic regimens for postoperative pain control via round-the-clock nonopioid analgesics as the initial treatment.

Oral acetaminophen usually is used as an initial treatment of acute pain because of its high therapeutic index. The Food and Drug Administration approved an intravenous (IV) formulation of the drug in 2010, which brought new potential to this century-old drug. Although IV acetaminophen might not offer a clear benefit over the oral formulation in patients who can tolerate oral intake, it may be more helpful in patients who remain intubated postoperatively or those who develop delayed gastric emptying or postoperative nausea and vomiting (PONV). Further, IV acetaminophen avoids variable first-pass elimination that accompanies oral administration, and thus has a faster onset and a greater peak plasma concentration. There is consequently greater cerebrospinal fluid penetration with the IV preparation, along with more predictable pharmacokinetic behavior and bioavailability.

Pain after cardiac surgery traditionally has been controlled with IV opioids and nonsteroidal antiinflammatory drugs, which have significant adverse effects. Therefore, there is an unmet need for a safer IV analgesic, such as IV acetaminophen. IV acetaminophen has been used effectively to control acute pain after various surgeries, but the extent to which it might help after cardiac surgery remains unclear. We therefore tested the primary hypothesis that IV acetaminophen is more effective than placebo for pain management after cardiac surgery. We defined a priori that acetaminophen would be considered more effective than placebo if it was superior on pain intensity score and/or opioid consumption and noninferior on both. We also tested the secondary hypotheses that IV acetaminophen reduces opioid-related adverse effects (PONV, sedation, and respiratory depression), reduces the duration of mechanical ventilation, and reduces intensive care unit (ICU) and hospital length of stay (LOS).

METHODS

This prospective, single-center, randomized, parallel-group, double-blind trial was approved by the Cleveland Clinic Institutional Review Board and registered before patient enrollment at ClinicalTrials.gov on March 28, 2013, registration number: NCT01182782. Principal investigator’s name: Negmeldeen Mamoun. Written consent was obtained from each participating patient.

We screened adults 18 years of age or older who were scheduled for elective cardiac surgery performed via a median sternotomy at the Cleveland Clinic. Exclusion criteria included complex cardiac surgery such as multiple valve replacements or aortic arch surgery. Other exclusion criteria included previous cardiac surgery, moderate or severe right ventricular dysfunction, left ventricular dysfunction with ejection fraction ≤35%, severe tricuspid regurgitation, severe lung disease requiring home oxygen therapy, preoperative renal insufficiency (creatinine ≥2.0) or hemodialysis, history of active liver disease or liver cirrhosis, chronic pain conditions that required daily preoperative opioid administration, pregnancy, weight less than 50 kg, and allergy to fentanyl or acetaminophen.

Protocol

Patients were randomized (1:1) without stratification to IV acetaminophen or placebo. Allocations were concealed by a password-protected Web site. Randomization codes were computer-generated by using the PLAN procedure in SAS statistical software (SAS Institute, Cary, NC), using block randomization with a block size of either 2 or 4 patients. After enrollment, the Cleveland Clinic Investigational Drug Pharmacy blinded the designated study drug by repackaging acetaminophen or placebo (normal saline). Study drugs were labeled with codes that remained locked until completion of patient enrollment.

Anesthetic induction involved the administration of etomidate or propofol, fentanyl, midazolam, and a depolarizing or nondepolarizing muscle relaxant to facilitate intubation. Fentanyl, isoflurane, and a depolarizing muscle relaxant were given as needed for shivering. Wounds were not infiltrated with local anesthetics. No other form of acetaminophen was permitted, nor were topical lidocaine patches or nonsteroidal antiinflammatory drugs allowed.

Four doses of IV acetaminophen (1 g each) or an equal volume of identical-looking placebo were given over 15 minutes every 6 hours (±30 minutes) starting in the operating room after sternal closure, with subsequent doses given in the ICU. All patients were also offered patient-controlled analgesia (PCA). Fentanyl was the default drug (PCA settings: no basal rate, demand bolus dose of 20 μg, bolus interval every 6 minutes); however, hydromorphone was substituted (PCA settings: no basal rate, demand bolus dose of 0.2 mg, bolus interval every 6 minutes) if clinically indicated, that is, fentanyl was ineffective in decreasing pain intensity scores <4/10 on the Numeric Rating Scale, where 0 is no pain and 10 is the worst possible pain.

Similarly, rescue analgesia included IV fentanyl or hydromorphone boluses, or oral oxycodone if PCA was ineffective in decreasing pain intensity scores <4/10. IV meperidine was given as needed for shivering. Wounds were not infiltrated with local anesthetics. No other form of acetaminophen was permitted, nor were topical lidocaine patches or nonsteroidal antiinflammatory drugs allowed.
Measurements

All study data were collected by nurses and research personnel blinded to group allocation. Standard anesthesia care included use of routine monitors recommended by the American Society of Anesthesiologists, invasive arterial pressure, transesophageal echocardiography, and bladder temperature monitoring. Central venous pressures and, in selected cases, pulmonary artery pressures also were monitored.

Baseline patient characteristics were recorded, along with surgical details. Cumulative opioid consumption during the first 24 hours after surgery was calculated. Administered opioids were converted to morphine equivalents to account for all given opioids, where 10 mg of IV morphine was equivalent to 100 μg of IV fentanyl, 1.5 mg of IV hydromorphone, 75 mg of IV meperidine, and 20 mg of oral oxycodone (Table E1). Pain intensity scores were evaluated at 4, 6, 8, 12, 16, 20, and 24 hours after surgery.

The incidence of PONV was assessed and documented by ICU nurses during the first 24 hours after surgery. The Richmond Agitation Sedation Scale (RASS) score was evaluated at 8, 16, and 24 hours after surgery. The duration of mechanical ventilation, ICU LOS, and hospital LOS were recorded. Blood was sampled for alanine aminotransferase (ALT), aspartate aminotransferase (AST), and bilirubin on the first and second postoperative days.

Statistical Analyses

Analyses followed a modified intent-to-treat principle, which we defined a priori as including all randomized patients who received any study treatment (either IV acetaminophen or placebo). As planned a priori, we assessed balance of the randomized groups on potentially confounding baseline variables using absolute standardized difference (ASD), defined as the absolute difference in means or proportions divided by the pooled standard deviation (SD). Any variable with ASD > 0.20 was considered imbalanced and was adjusted for in all analyses.

Primary analyses. We assessed the effectiveness of IV acetaminophen (vs placebo) on pain management, measured by cumulative opioid consumption and pain intensity scores within the first 24 hours after surgery, using a joint hypothesis testing framework. IV acetaminophen was considered more effective than placebo if it was noninferior on both primary outcomes and superior on at least one. We thus planned to test for superiority only if IV acetaminophen was found to be noninferior on both outcomes. A priori, we defined noninferiority deltas as a ratio of means of 1.15 for opioid consumption (ie, no more than 15% greater in the acetaminophen group) and 1 point for Numeric Rating Scale pain intensity score (ie, no more than 1 point worse).

Joint hypothesis testing of pain score and opioid consumption was conducted at the overall 0.05 significance level, and all tests were 1-tailed in the direction favoring acetaminophen. No multiple testing adjustment was made when we tested for noninferiority because noninferiority was required on both outcomes (ie, 0.05 1-tailed significance criterion, 90% confidence intervals [CIs]); however, we adjusted for multiple comparisons for superiority testing because superiority on either outcome (given noninferiority on both) was sufficient to reject the null hypothesis (ie, 0.025 1-tailed significance criterion, 95% CI; Bonferroni correction).

Cumulative opioid consumption was normalized with a log transformation. For both noninferiority and superiority testing, we estimated the treatment effect on log opioid consumption by using a multivariable linear regression model and the treatment effect on pain intensity scores by using a repeated-measures linear regression model with an autoregressive correlation structure adjusting for time and testing the treatment-by-time interaction. Noninferiority was detected if the upper 90% confidence limit for the treatment effect was less than the respective noninferiority delta. Superiority was found if the estimated upper 95% confidence limit fell below a ratio of means of 1 for opioid consumption and below 0 for pain score. Missing pain assessments were assumed to be missing at random.

Secondary analyses. We tested for superiority for all secondary outcomes by using 2-tailed tests. The effect of IV acetaminophen on PONV was estimated with a multivariable logistic regression model with a log link to estimate relative risk. We estimated the treatment effect on RASS scores at 8, 16, and 24 hours after surgery by using separate Wilcoxon rank sum tests with Hodges-Lehmann estimation of median difference for each time point. Missing RASS assessments were assumed to be missing at random.

The effect of IV acetaminophen on duration of mechanical ventilation, ICU LOS, and hospital LOS was assessed by the use of separate multivariable linear regression models. We estimated the treatment effect of IV acetaminophen on ALT, AST, and total bilirubin liver enzymes on the first and second postoperative days by using a repeated-measures linear regression model with an autoregressive correlation structure and adjusting for time and respective baseline preoperative liver enzyme levels.

RESULTS

A total of 1845 patients were screened between May 2013 and December 2014, of whom 155 provided written consent. Five consented patients were excluded from the study before randomization because surgery was cancelled or surgical plan was changed; thus, 150 patients completed enrollment. Among the 150 patients enrolled in the trial (75 patients per group), 2 patients in the acetaminophen group and 1 patient in the placebo group withdrew after randomization but before receiving treatment and were thus excluded from analyses (Figure 1).

Table 1 presents patient baseline and demographic characteristics. Patients in the IV acetaminophen group were older and more likely to have diabetes mellitus on the basis of our a priori definition of imbalance.
(ie, ASD > 0.2), so all analyses were adjusted for age and diabetes status. Other baseline variables and preoperative characteristics were balanced between groups.

Primary Analyses

Summary. IV acetaminophen was found to be more effective than placebo on pain management because it was superior on pain intensity scores and noninferior on opioid consumption, with a difference in mean pain score (95% CI) of −0.90 (−1.39, −0.42), \(P < .001 \) (superior) and estimated ratio of means in opioid consumption (90% CI) of 0.89 (0.73-1.10), \(P = .28 \) (noninferior; not superior) (Figure 2). Mean ± SD postoperative pain scores (average for each patient) within the first 24 hours after surgery were 3.1 ± 1.6 for IV acetaminophen patients and 4.0 ± 1.4 for placebo (Table 2; Figure 3), and noninferior on cumulative opioid dose in morphine equivalents was 97 [58, 136] mg for IV acetaminophen and 117 [66, 174] mg for placebo; Table 2; Figure 4).

Noninferiority. The ratio of means (90% CI) for IV acetaminophen versus placebo patients on cumulative opioid consumption was 0.89 (0.75-1.06). Because the upper confidence limit of the 90% CI was less than the specified delta of 1.15, we conclude noninferiority of IV acetaminophen compared with placebo (\(P = .008 \)). IV acetaminophen caused an estimated mean (90% CI) reduction of −0.90 (−1.31, −0.50) in postoperative pain scores compared with placebo. We thus claimed noninferiority of IV acetaminophen to placebo because the upper limit of the 90% CI was less than the a priori noninferiority delta of 1 point (\(P < .001 \)). Mean pain intensity scores were greatest within a few hours after surgery and decreased over time. Treatment effect did not differ over time (treatment-by-time interaction \(P = .35 \)).

Superiority. Because IV acetaminophen was noninferior on both opioid consumption and pain intensity scores, we proceeded to superiority testing (Figure 5). IV acetaminophen was not superior to placebo on mean opioid consumption, with an estimated ratio of means (95% CI) of 0.89 ([0.73-1.10]; \(P = .28 \)); however, IV acetaminophen was superior to placebo on pain intensity scores, with a mean (95% CI) change of −0.90 (−1.39, −0.42); \(P < .001 \), Figure 5). Therefore, the joint null hypothesis was rejected, and IV acetaminophen was found more effective on pain management than placebo.
Preoperative labs

Procedure information

Medical history

TABLE 1. Baseline and demographic characteristics of study population

<table>
<thead>
<tr>
<th>Factor</th>
<th>Acet (n = 73)</th>
<th>Placebo (n = 74)</th>
<th>ASD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>62 ± 14</td>
<td>59 ± 14</td>
<td>0.22</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>24 (33)</td>
<td>24 (32)</td>
<td>0.01</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>30 ± 6</td>
<td>30 ± 6</td>
<td>0.08</td>
</tr>
<tr>
<td>Procedure information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve surgery, n (%)</td>
<td>36 (49)</td>
<td>37 (50)</td>
<td>0.01</td>
</tr>
<tr>
<td>CABG, n (%)</td>
<td>21 (29)</td>
<td>17 (23)</td>
<td>0.13</td>
</tr>
<tr>
<td>Myectomy, n (%)</td>
<td>24 (33)</td>
<td>18 (24)</td>
<td>0.19</td>
</tr>
<tr>
<td>Ascending aortic replacement, n (%)</td>
<td>15 (21)</td>
<td>17 (23)</td>
<td>0.06</td>
</tr>
<tr>
<td>Other surgeries,† n (%)</td>
<td>23 (32)</td>
<td>17 (23)</td>
<td>0.19</td>
</tr>
<tr>
<td>CPB duration, min</td>
<td>73 ± 36</td>
<td>72 ± 34</td>
<td>0.01</td>
</tr>
<tr>
<td>Aortic cross-clamp, n (%)</td>
<td>73 (100)</td>
<td>74 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td>Intraoperative fentanyl dose, µg</td>
<td>1021 ± 230</td>
<td>1018 ± 352</td>
<td>0.01</td>
</tr>
<tr>
<td>Preoperative labs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total bilirubin, mg/dL</td>
<td>0.6 ± 0.3</td>
<td>0.5 ± 0.3</td>
<td>0.13</td>
</tr>
<tr>
<td>ALT, U/L</td>
<td>24.3 ± 10.5</td>
<td>25.6 ± 11.3</td>
<td>0.12</td>
</tr>
<tr>
<td>AST, U/L</td>
<td>23.2 ± 6.6</td>
<td>24.0 ± 6.9</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Acet, Intravenous acetaminophen; ASD, absolute standardized difference; BMI, body mass index; CABG, coronary artery bypass graft surgery; CPB, cardiopulmonary bypass; ALT, alanine aminotransferase; AST, aspartate aminotransferase. *ASD, defined as the absolute difference in means or proportions divided by the pooled standard deviation. Any variables with ASD >0.20 were considered imbalanced and were adjusted for in all analyses. †Other surgeries include atrial septal defect or patent foramen ovale closure, left atrial appendage ligation, Maze surgery, pulmonary vein isolation, right atrial or tricuspid valve mass excision, aortic root repair or aortoplasty, pacemaker wire removal, and coronary fistula repair.

Secondary Analyses

IV acetaminophen had no significant effect on PONV, with an estimated relative risk (95% CI) of 0.76 ([0.34-1.68]; P = .35, Table 3). Approximately one third of RASS evaluations were not performed at the specified time points; no association between IV acetaminophen and RASS score was found among the available evaluations (Table 3). We originally planned to assess the effect of IV acetaminophen on respiratory depression, but no patients had respiratory depression events.

There was no significant effect of IV acetaminophen on duration of mechanical ventilation, ICU, or hospital LOS, with estimated ratio of geometric means (95% adjusted CI) of 1.3 ([0.5-3.2]; P = .46) for duration of mechanical ventilation, 0.9 ([0.7-1.2]; P = .38) for ICU LOS, and 1.1 ([0.9-1.2]; P = .12) for hospital LOS (Table 3). IV acetaminophen did not have a significant effect on mean postoperative liver enzyme levels, with estimated ratio of geometric means (95% adjusted CI) of 1.1 ([0.9-1.2]; P = .31) for ALT, 1.0 ([0.8-1.2]; P = .98) for AST, and 1.1 ([0.9-1.3]; P = .40) for total bilirubin (Table 3).

Of note, 73% of IV acetaminophen and 82% of placebo patients had fentanyl PCA, and 23% of IV acetaminophen and 24% of placebo patients had hydromorphone PCA. A total of 5.5% of IV acetaminophen and 13.5% of placebo patients received IV meperidine for shivering, and 27% of IV acetaminophen and 30% of placebo patients received oral oxycodone. All opioids were converted to morphine equivalents to account for all given opioids.

DISCUSSION

We used joint hypothesis testing to evaluate pain intensity and opioid consumption, both of which were likely to be improved by an effective analgesic. We thus planned to conclude that IV acetaminophen is superior to placebo on pain management only if it was noninferior on both outcomes and superior on at least one. This technique allows for a straightforward interpretation of the results while preserving Type I error.26 Our results demonstrate that IV acetaminophen was noninferior on

FIGURE 2. IV acetaminophen was noninferior on opioid consumption and superior on pain score. The left panel illustrates the distribution of opioid consumption by treatment group, defined as the total amount of opioids consumed within the first 24 hours after surgery and converted to morphine equivalents (mg). The right panel presents the distribution of pain intensity scores within the first 24 hours by treatment group. Pain intensity scores are based on a 0-10 Numeric Rating Scale, where 0 is no pain and 10 is the worst possible pain. IV, Intravenous.
opioid consumption and superior on analgesia. Cardiac surgery performed via a median sternotomy is associated with moderate-to-severe pain intensity. Although 1 g of IV acetaminophen has an analgesic efficacy comparable with 10 mg of morphine or 30 mg of ketorolac, it is unlikely to itself provide sufficient analgesia after cardiac surgery. Consistent with this theory, IV acetaminophen provided significant analgesia; however, the effect was small, averaging only about 1 point on a 0-10 Numeric Rating Scale.

Table 2. Effect of IV acetaminophen (vs placebo) on pain management: Total opioid consumption and pain intensity scores within the first 24 hours after surgery

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Acet (n = 73)</th>
<th>Placebo (n = 74)</th>
<th>Test</th>
<th>Delta</th>
<th>CL*</th>
<th>Acet/placebo (CI)*</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioids (morphine equivalent), mg</td>
<td>73</td>
<td>97 [58, 136]</td>
<td>74</td>
<td>117 [66, 174]</td>
<td>NI</td>
<td>1.15</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUP</td>
<td>1</td>
<td>95%</td>
</tr>
<tr>
<td>Difference in means†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acet – placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain intensity scores, overall</td>
<td>73</td>
<td>3.1 ± 1.6‡</td>
<td>74</td>
<td>4.0 ± 1.4‡</td>
<td>NI</td>
<td>1</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUP</td>
<td>0</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 h</td>
<td>59</td>
<td>4.6 ± 2.9</td>
<td>62</td>
<td>5.0 ± 3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 h</td>
<td>63</td>
<td>3.5 ± 2.4</td>
<td>66</td>
<td>4.4 ± 2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>64</td>
<td>3.2 ± 2.6</td>
<td>71</td>
<td>4.4 ± 2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 h</td>
<td>71</td>
<td>2.4 ± 2.5</td>
<td>72</td>
<td>3.5 ± 2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 h</td>
<td>72</td>
<td>3.0 ± 2.4</td>
<td>72</td>
<td>3.6 ± 2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 h</td>
<td>72</td>
<td>2.9 ± 2.1</td>
<td>69</td>
<td>4.2 ± 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 h</td>
<td>72</td>
<td>2.5 ± 2.1</td>
<td>73</td>
<td>3.5 ± 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary statistics are reported as mean ± SD or median [first quartile, third quartile], as appropriate. Acet, Intravenous acetaminophen; CL, confidence level; CI, confidence interval; NI, noninferior; SUP, superior. †All tests are 1-tailed at the overall .05 significance level. Because both outcomes are required for noninferiority, they were each assessed at the .05 significance level. We performed each superiority test at the .025 significance level because only one significant test was required to reject the null hypothesis (ie, Bonferroni correction). ‡Ratio of geometric means estimated as exponentiated treatment effect parameter from a multivariable linear regression on log opioid consumption, adjusting for age and diabetes. †Difference in overall postoperative pain score means based on a repeated measures linear regression model with an autoregressive correlation structure, adjusting for age, time, and diabetes. There was no significant treatment-by time interaction (P = .35). †Noninferiority claimed because the upper confidence limit for the 90% CI is less than the specified delta. ‡Superiority claimed because the upper confidence limit for the 95% CI is less than the specified delta. †Overall mean ± SD of mean pain score per patient.
Our results are consistent with those reported by Cattabriga et al., who reported a significant reduction in pain but not cumulative opioid consumption after cardiac surgery; however, they used a non-standard approach to provide background analgesia to all their patients by using a fixed dose of both loading and continuous infusion of IV tramadol, which is unavailable in the United States. Certainly, improved analgesia in patients treated with a tramadol-based background analgesia might not be generalizable to our patient population. Also, the use of opioids only as a rescue analgesic limited their ability to evaluate opioid consumption as a primary endpoint. To be able to do so, they would have needed to increase their sample size by almost 5-fold. In contrast, we used opioids for both rescue and background analgesia which allowed us to use a joint hypothesis testing to evaluate both pain intensity scores and opioid consumption as our primary endpoint.

IV acetaminophen has been reported to reduce pain more consistently than reducing opioid consumption. Indeed, other trials also report improved pain scores without a reduction in opioid consumption. Our study was designed to identify a 30% difference in opioid consumption between the acetaminophen and placebo groups. Opioid consumption was an estimated 11% lower (95% CI 27% decrease to 10% increase) with IV acetaminophen, yielding a conclusion of noninferiority versus placebo because the upper limit is less than the 15% a priori defined noninferiority delta. We had 90% power to detect superiority, given a true reduction of 30% or more in mean opioid consumption, but our results do not suggest a benefit nearly that large.

We found that addition of IV acetaminophen to an opioid-based analgesic regimen had no significant effect on PONV, RASS scores, duration of mechanical ventilation, or ICU and hospital LOS. It was unsurprising to find comparable opioid-related adverse effects, given that opioid consumption also was similar in each treatment group. Only few studies showed significant reduction of opioid-related adverse effects. The reduction of PONV in our study correlated with the reduction of pain but not with reduction in opioid consumption, suggesting that reduced PONV was mediated mainly through more effective analgesia. Our study was underpowered to detect such reduction.

IV acetaminophen reduces initial hepatic exposure and avoids first-pass hepatic metabolism; the IV preparation is thus assumed to be safer than oral acetaminophen from a hepatic perspective. Daily administration of 4 g of acetaminophen significantly increases ALT plasma concentrations in healthy volunteers; however, increases in liver enzymes were not reported in studies that evaluated the safety of a short-term regimen of 4 g of IV acetaminophen daily in both hospitalized patients with a mix of surgical and medical patients and in cardiac critical care units. In our study, there was no increase in liver enzymes in patients who received IV acetaminophen compared with the placebo group.

This study had few limitations. IV fentanyl was the default postoperative opioid, but patients were permitted to receive...
TABLE 3. Effect of IV acetaminophen (vs placebo) on secondary outcomes within the first 24 hours after surgery

<table>
<thead>
<tr>
<th>Secondary outcome</th>
<th>n</th>
<th>Acet (n = 73)</th>
<th>Placebo (n = 74)</th>
<th>Relative risk* (CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PONV, n (%)</td>
<td>73</td>
<td>16 (22)</td>
<td>74</td>
<td>21 (28)</td>
<td></td>
</tr>
<tr>
<td>RASS score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>48</td>
<td>0 [-1, 0]</td>
<td>41</td>
<td>0 [-1, 0]</td>
<td>0 (0, 0)</td>
</tr>
<tr>
<td>16 h</td>
<td>39</td>
<td>0 [-1, 0]</td>
<td>43</td>
<td>0 [0, 0]</td>
<td>0 (0, 0)</td>
</tr>
<tr>
<td>24 h</td>
<td>39</td>
<td>0 [0, 0]</td>
<td>31</td>
<td>0 [0, 0]</td>
<td>0 (0, 0)</td>
</tr>
<tr>
<td>ICU LOS, h</td>
<td>73</td>
<td>214 [143, 345]</td>
<td>74</td>
<td>190 [139, 381]</td>
<td>1.3 (0.52-3.2)</td>
</tr>
<tr>
<td>Hospital LOS, d</td>
<td>73</td>
<td>6.2 [5.3, 7.3]</td>
<td>74</td>
<td>6.1 [5.1, 7.2]</td>
<td>1.1 (0.94-1.2)</td>
</tr>
<tr>
<td>ALT (U/L), overall</td>
<td>73</td>
<td>18 [15, 23]</td>
<td>74</td>
<td>19 [15, 24]</td>
<td>1.1 (0.90-1.2)</td>
</tr>
<tr>
<td>POD 1</td>
<td>73</td>
<td>18 [16, 24]</td>
<td>74</td>
<td>19 [15, 25]</td>
<td></td>
</tr>
<tr>
<td>POD 2</td>
<td>73</td>
<td>17 [14, 22]</td>
<td>74</td>
<td>18 [15, 23]</td>
<td></td>
</tr>
<tr>
<td>AST (U/L), overall</td>
<td>73</td>
<td>35 [30, 45]</td>
<td>74</td>
<td>33 [29, 51]</td>
<td>1.0 (0.80-1.2)</td>
</tr>
<tr>
<td>POD 1</td>
<td>73</td>
<td>40 [32, 54]</td>
<td>74</td>
<td>40 [32, 57]</td>
<td></td>
</tr>
<tr>
<td>POD 2</td>
<td>73</td>
<td>31 [24, 42]</td>
<td>74</td>
<td>31 [23, 45]</td>
<td></td>
</tr>
<tr>
<td>Total bilirubin (mg/dL), overall</td>
<td>73</td>
<td>0.7 [0.5, 0.9]</td>
<td>74</td>
<td>0.7 [0.5, 0.8]</td>
<td>1.1 (0.87-1.3)</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL), POD 1</td>
<td>73</td>
<td>0.7 [0.5, 1.0]</td>
<td>74</td>
<td>0.7 [0.5, 0.8]</td>
<td></td>
</tr>
<tr>
<td>Total bilirubin (mg/dL), POD 2</td>
<td>73</td>
<td>0.6 [0.4, 0.8]</td>
<td>74</td>
<td>0.6 [0.4, 0.8]</td>
<td></td>
</tr>
</tbody>
</table>

Summary statistics are reported as n (%) or median [first quartile, third quartile], as appropriate. Acet, Intravenous acetaminophen; CI, confidence interval; PONV, postoperative nausea and vomiting; RASS, Richmond Agitation Sedation Scale; ICU, intensive care unit; LOS, length of stay; ALT, alanine aminotransferase; POD, postoperative day; AST, aspartate aminotransferase. *Relative risk of PONV in Acet versus placebo patients estimated from a multivariable logistic regression model using the log link and adjusting for age and diabetes. |Significance criterion of 0.006 used for each secondary outcome (ie, Bonferroni correction, 0.05/8). Groups were compared at the 0.002 significance level for each RASS assessment (ie, 0.006/5). |Difference in medians of IV acetaminophen versus placebo patients based on Wilcoxon rank sum test and Hodges-Lehmann estimation of location shift. |Secondary outcomes were log-transformed to meet model assumptions. The treatment effect on duration of mechanical ventilation, ICU LOS, and hospital LOS was assessed by use of the ratio of geometric means from separate multivariable logistic regression models, each adjusting for age and diabetes. Using an autoregressive correlation structure and adjusting for age, diabetes, and time of measurement, we used a similar repeated-measures model to assess the effect of Acet on liver enzymes. |Median [first quartile, third quartile] of mean liver enzyme per patient.

IV hydromorphone, meperidine, or oral oxycodone if clinically indicated. We used standard conversions among the allowed opioids, but all conversion systems are only rough approximations, especially given highly variable context-sensitive half-lives of various opioids. Occasional pain scores were missing, mostly in patients who remain intubated; some patients thus contributed fewer pain scores than others to our mixed-effects model. The amount and pattern of missing data, however, were similar in the randomized groups making it unlikely that missing data much altered our results. In addition, about a third of the RASS scores—a secondary outcome—were missing. Our analyses assume that data were missing at random. This study is underpowered to make conclusions about secondary endpoints, so secondary results should be interpreted with caution.

In conclusion, IV acetaminophen significantly reduced pain intensity scores by about 1 point on a 0-10 scale but did not significantly reduce opioid consumption after cardiac surgery. IV acetaminophen alone, unsurprisingly, provided insufficient analgesia for patients recovering from median sternotomy. It may be used, however, as an effective component of a multimodal analgesic strategy after cardiac surgery.

Conflict of Interest Statement
Authors have nothing to disclose with regard to commercial support.

References

888 The Journal of Thoracic and Cardiovascular Surgery • September 2016

Key Words: intravenous acetaminophen, cardiac surgery, acute pain management, multimodal analgesia
<table>
<thead>
<tr>
<th>Morphine-like agonists</th>
<th>Equianalgesic dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
</tr>
<tr>
<td>Morphine</td>
<td>30 mg</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>–</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>7.5 mg</td>
</tr>
<tr>
<td>Meperidine</td>
<td>300 mg</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>20 mg</td>
</tr>
</tbody>
</table>