Predictive equations for lung volumes from computed tomography for size matching in pulmonary transplantation

Jeremy A. Konheim, MD, a Zachary N. Kon, MD, a Chetan Pasrija, MD, a Qingyang Luo, PhD, b Pablo G. Sanchez, MD, PhD, a Jose P. Garcia, MD, c Bartley P. Griffith, MD, a and Jean Jeudy, MD d

ABSTRACT

Objective: Size matching for lung transplantation is widely accomplished using height comparisons between donors and recipients. This gross approximation allows for wide variation in lung size and, potentially, size mismatch. Three-dimensional computed tomography (3D-CT) volumetry comparisons could offer more accurate size matching. Although recipient CT scans are universally available, donor CT scans are rarely performed. Therefore, predicted donor lung volumes could be used for comparison to measured recipient lung volumes, but no such predictive equations exist. We aimed to use 3D-CT volumetry measurements from a normal patient population to generate equations for predicted total lung volume (pTLV), predicted right lung volume (pRLV), and predicted left lung volume (pLLV), for size-matching purposes.

Methods: Chest CT scans of 400 normal patients were retrospectively evaluated. 3D-CT volumetry was performed to measure total lung volume, right lung volume, and left lung volume of each patient, and predictive equations were generated. The fitted model was tested in a separate group of 100 patients. The model was externally validated by comparison of total lung volume with total lung capacity from pulmonary function tests in a subset of those patients.

Results: Age, gender, height, and race were independent predictors of lung volume. In the test group, there were strong linear correlations between predicted and actual lung volumes measured by 3D-CT volumetry for pTLV (r = 0.72), pRLV (r = 0.72), and pLLV (r = 0.69). A strong linear correlation was also observed when comparing pTLV and total lung capacity (r = 0.82).

Conclusions: We successfully created a predictive model for pTLV, pRLV, and pLLV. These may serve as reference standards and predict donor lung volume for size matching in lung transplantation. (J Thorac Cardiovasc Surg 2016;151:1163-9)

Size matching for lung transplantation is an important consideration and has a significant influence on clinical outcomes. Size mismatch has been shown to be associated with prolonged stay in intensive care units, persistent atelectasis, pneumothorax, hyperinflation, decreased maximum exercise capacity, and earlier occurrence of bronchiolitis obliterans syndrome.1-3 Yet methods of size matching for lung transplantation remain crude.

The most widely accepted method for size matching uses height comparisons between donor and recipient. Height is a poor predictor of lung volume and therefore is a potentially inaccurate surrogate to use for size matching in lung transplantation. This may allow for wide variation

From the aDivisions of Cardiac Surgery and dThoracic Radiology, University of Maryland School of Medicine, Baltimore, Md; bDivision of Applied Health Services Research, Ochsner Clinic Foundation, New Orleans, La; and cDivision of Cardiac Surgery, Massachusetts General Hospital, Boston, Mass.

Received for publication May 9, 2015; revisions received Sept 29, 2015; accepted for publication Oct 18, 2015; available ahead of print Dec 23, 2015.

Address for reprints: Chetan Pasrija, MD, Division of Cardiac Surgery, University of Maryland, 22 S Greene St, Baltimore, MD 21201 (E-mail: cpasrija@smail.umaryland.edu).

0022-5223/S36.00
Copyright © 2016 by The American Association for Thoracic Surgery
http://dx.doi.org/10.1016/j.jtcvs.2015.10.051

Scanning this QR code will take you to supplemental figures for this article.
of actual donor and recipient lung volumes, resulting in significant size mismatch.

Three-dimensional computed tomography (3D-CT) volumetry is a new and reliable method of assessing lung volume, and has even been shown to be more reproducible then total lung capacity (TLC) measurements by pulmonary function tests (PFTs). This technology could potentially be used for size matching by comparing a transplant recipient’s lung volume measured by 3D-CT volumetry with a transplant donor’s predicted lung volume. Because 3D-CT volumetry allows for the right and left lungs to be evaluated separately, this method can be applied to single or double lung transplantation. However there presently are no predictive models established in the literature for lung volumes derived from this technique. We aimed to create predictive equations based on readily available donor demographic data for total lung volume (TLV), right lung volume (RLV), and left lung volume (LLV) extrapolated from 3D-CT volumetry.

PATIENTS AND METHODS

Study Rationale

To analyze the predictive ability of height as a surrogate for lung volume, a retrospective review of 104 consecutive lung transplantations performed at our institution from 2005 to 2010. Recipient height was found to have a very weak correlation with measured recipient TLV from pretransplant computed tomography (CT), and TLC from PFT (Figure 1). This suggests the inaccuracy of height as a sole determinant for size matching in lung transplantation and directed a potential need for a different size-matching strategy.

Patients

Institutional review board approval (HP-00045429) was obtained and a waiver of patient consent was granted. Consecutive chest CT scans of patients between ages 18 and 55 years that were performed between 2005 and 2010 were evaluated. CT scans were initially read and interpreted by a radiologist at the time the scan was completed, and again, retrospectively, by a radiologist who specializes in thoracic radiology (JJ). CT scans that were read as abnormal, with evidence of pulmonary or cardiac disease (including radiologic findings suggestive of restrictive or obstructive disease, pleural or parenchymal abnormalities, atelectasis,

![FIGURE 1. Correlation between lung transplant recipient height and A, Total lung capacity (TLC) and B, Total lung volume (TLV).]
using manual segmentation, separating the 2 lungs down the midline of the trachea. The lung volumes were calculated automatically by the software as the sum of volumes of voxels included in the segmentation.

Lung Volume Measurement From Body Plethysmography

Retrospective chart review of the testing group was conducted. Of the 100 patients in this group, 20 patients were found to have undergone a synchronous normal body plethysmography study within 6 months of their CT scan. TLC was measured following guidelines established by the American Thoracic Society. TLC measurements were defined as normal if they were between 80% and 120% of the predicted TLC (pTLC) value for those individuals.

Statistical Analysis

Lung volumes—TLV, RLV, and LLV—were the response variables. Age, gender, race, height, body mass index, and body surface area were the predictor variables. The pTLV, predicted RLV (pRLV), and predicted LLV (pLLV), were obtained using the lasso regression with a 10-fold cross-validation. The lasso regression simultaneously performs parameter estimation and variable selection and can prevent overfitting. We allocated 400 patients for training and 10-fold cross-validation, and we allocated 100 patients for testing. A predictor variable was considered to have a statistically significant contribution to lung volume if it was selected in the lasso regression. Comparisons between predicted and measured lung volumes were further achieved by computing Pearson’s product-moment correlation. In the subset of patients with both a normal chest CT and a normal PFT, 3D-CT volumetry and PFT were correlated by comparing TLV to TLC, and pTLV to TLC.

RESULTS

Predictive Lung Volume Equations

The training group was used to construct the predictive equations. This population included 219 women and 181 men, with a mean age of 40 years (range, 18-55 years). The demographic and descriptive variables for the 400 patients in the training group are listed in Table 1. The overall mean 3D-CT volumetry measurements for TLV, RLV, and LLV were 4.23 L, 2.26 L, and 1.97 L, respectively.

Four variables were selected by the lasso regression as predictors of TLV, RLV, and LLV: age, gender, race, and height. Parameter estimate was achieved using the model, and predictive equations were created for TLV, RLV, and LLV (Figure 3). Demographic and descriptive variables and average 3D-CT lung volumes for the testing group of 100 patients are listed in Table 2.

TABLE 1. Demographic data and lung volumes for the training group (n = 400)

<table>
<thead>
<tr>
<th>Demographic characteristic</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>39.8 ± 10.3 (18-55)</td>
</tr>
<tr>
<td>Men</td>
<td>181 (45.25)</td>
</tr>
<tr>
<td>Women</td>
<td>219 (54.75)</td>
</tr>
<tr>
<td>African American</td>
<td>257 (64.25)</td>
</tr>
<tr>
<td>Not African American</td>
<td>143 (35.75)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>169.8 ± 11.7 (123-201)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>87.8 ± 26.7 (36-189)</td>
</tr>
<tr>
<td>Body mass index</td>
<td>30.6 ± 9.7 (14-76)</td>
</tr>
<tr>
<td>Body surface area</td>
<td>2.0 ± 0.3 (1.3-3.1)</td>
</tr>
<tr>
<td>Lung volumes (L)</td>
<td></td>
</tr>
<tr>
<td>Total lung volume</td>
<td>4.23 ± 1.14 (1.79-7.52)</td>
</tr>
<tr>
<td>Right lung volume</td>
<td>2.26 ± 0.59 (1.03-4.15)</td>
</tr>
<tr>
<td>Left lung volume</td>
<td>1.97 ± 0.56 (0.76-3.53)</td>
</tr>
</tbody>
</table>

Data are reported as mean ± standard deviation (range) or n (%).
Testing Predictive Equations: Predicted Lung Volume Versus Measured Lung Volume

The predictive equations created from the training group were used to calculate pTLV, pRLV, and pLLV for the patients in the testing group. These volumes were plotted against the measured 3D-CT volumetry values for TLV, RLV, and LLV for these patients, respectively (Figure 4). There were strong linear correlations for pTLV versus TLV ($r = 0.72; P < .0001; 95\%$ confidence interval [CI], 0.60-0.80), pRLV versus RLV ($r = 0.72; P < .0001; 95\%$ CI, 0.61-0.80), and pLLV versus LLV ($r = 0.69; P < .0001; 95\%$ CI, 0.57-0.78). An additional model using only gender and height was constructed, but resulted in inferior predictive ability (Figure E1).

Comparing 3D-CT Volumetry to PFT

Data from the subset testing group who had a normal chest CT scan and a normal PFT were used to compare the predictive equation to measurements by PFT, by comparing TLV with TLC, and pTLV with TLC. Strong linear correlations were seen for TLV versus TLC ($r = 0.79; P < .0001; 95\%$ CI, 0.54-0.91) (Figure 5, A), and pTLV versus TLC ($r = 0.82; P < .0001; 95\%$ CI, 0.59-0.93) (Figure 5, B).

DISCUSSION

In an attempt to develop a new size-matching strategy in lung transplantation, we created predictive equations for donor lung volumes using readily available demographic characteristics—age, gender, race, and height. With the use of these predictive equations, donors’ predicted lung volumes could in the future be compared with recipients’ measured lung volumes by 3D-CT volumetry for size matching in lung transplantation.

The method of size matching for lung transplantation that is most widely used in the United States is height comparison between the recipient and donor. Height has been shown to be an important predictor of lung size and height mismatch is associated with donor–recipient size mismatch.13,14 Even further, height as a predictor of lung size has been time-tested; it has been successfully used as a predictor of lung transplantation success over the past 2 decades in the United States. However, data from our institution suggest that height is not the optimal predictor of lung volume in end-stage lung disease, either grossly over- or underestimating it. Size mismatch has been shown in recent years to play a significant role in allograft function and bronchiolitis obliterans syndrome. Eberlein and colleagues3 showed a 22% absolute increase in bronchiolitis obliterans syndrome in undersized lungs compared with oversized lungs after bilateral lung transplantation.3 These authors also showed an 8% absolute decrease in forced expiratory volume in 1 second/forced vital capacity ratio in the same cohorts.

Although other size-matching strategies have sporadically been described, including chest roentgenogram dimensions, inframammary circumference, and vital capacity,15-17 the only other widely used methods are donor pTLC versus recipient pTLC and donor pTLC versus recipient actual TLC. For pTLC, the PFT predictive equations were created based on PFT measurements in a normal population.18-22 Interestingly,
Crapo and colleagues’ equations do not incorporate age or race, which were shown in our study to be independent predictors of TLV, RLV, and LLV. This may explain why the regression equations we developed account for a greater degree of variance than those published for men ($r = 0.54$) and women ($r = 0.60$) by Crapo and colleagues for TLC. Similarly, we created a 3D-CT volumetry model using only height and gender as predictors to analyze the predictive ability of the 2 variables deemed important from Crapo and colleagues. However, this was found to have an inferior predictive ability compared with the included model.

Whereas the donor pTLC to recipient pTLC strategy has its merits, studies have shown that this is associated with a high degree of variance when compared with actual measured volumes. Specifically, in idiopathic pulmonary fibrosis, Mason and colleagues showed that although the mean pTLC ratio was 0.95, the mean actual TLC ratio was 1.93. Although this discrepancy may be limited by comparing donor pTLC to recipient actual TLC, this method still may be limited in comparison to a 3D-CT volumetry-derived strategy. Brown and colleagues concluded that CT imaging was significantly more reproducible than PFT, with a higher correlation in serial lung volume measurements compared with PFT. This study suggests that 3D-CT volumetry may provide lung volumes that are superior to TLC in reliability and reproducibility.

An additional benefit to measuring lung volumes using 3D-CT volumetry over PFT is that TLC measures static inspiratory volume, which indicates lung function, whereas TLV is an anatomic measurement. As a result, TLC only accounts for alveolar space, and therefore it may underestimate volume in patients with restrictive disease or atelectasis. 3D-CT would be able to account for this volume. Furthermore, 3D-CT volumetry allows evaluation of individual lung volumes, enabling assessment of disease in the left and right lungs individually. Because single-lung transplantation continues to account for a significant proportion of total lung transplants, these equations may offer a unique advantage in size matching for bilateral as well as single-lung transplantation.

Limitations

It is difficult to definitively know that patients are at full inspiration during CT imaging. When performing PFTs, patients are coached by technicians to fully inspire upon testing. Although CT technicians insist that patients take a full inspiration, patients are not consistently coached on breathing techniques before CT. Chest CT scans with flattening or anterior bowing of the posterior membranous tracheal wall were excluded from this study because these configurations are consistent with submaximal inspiration.

Additionally, our study does not provide insight to the degree of variance between pTLV and recipient TLV that
should be deemed acceptable, nor does it directly compare the size-matching accuracy to TLC or other size-matching options. With these predictive equations, these questions and hypotheses now can be evaluated in future, prospective trials.

CONCLUSIONS

We successfully constructed predictive equations for TLV, RLV, and LLV, using lung volumes of 400 individuals obtained by 3D-CT volumetry, that only require gender, age, race, and height as variables. The predictive equations created correlate strongly with measured volumes. They may open the door to many new possibilities in the application of 3D-CT volumetry in various fields, particularly in lung transplantation. Using these equations, we hope to perform a prospective study assessing the clinical utility of a 3D-CT volumetry-derived size-matching strategy to improve outcomes in lung transplantation.

Conflict of Interest Statement

Authors have nothing to disclose with regard to commercial support.

The authors thank Charles White, MD, Nevins Todd, MD, Brandi Knight, MD, Brigitte Pocta, and Allison B. McCoy, PhD, for providing intellectual, data collection, and editing contributions.

References

Key Words: computed tomography, lung, organ donor management, regression analysis, lung transplantation

Readers who found these articles interesting may also like to read the following papers found in recent and future issues of our sister publications, *Seminars in Thoracic and Cardiovascular Surgery* and *Operative Techniques in Thoracic and Cardiovascular Surgery*!

Transplantation

Editorial Commentary: Is it Worth it to Increase the Use of Extracorporeal Membrane Oxygenation? Marco Morsolini. *Semin Thorac Cardiovasc Surg* 2015; Summer; 27(2):89-90.

Original Submission: Increased Procurement of Thoracic Donor Organs After Thyroid Hormone Therapy. Dimitri Novitzky. *Semin Thorac Cardiovasc Surg* 2015; Summer; 27(2):123-133.

Editorial Commentary: Optimizing Donor Quality Via Hormonal Therapy: An Important Strategy to Increase Successful Placement of Thoracic Organs in End-Stage Patients. Syed M. Peer. *Semin Thorac Cardiovasc Surg* 2015; Summer; 27(2):133-134.

FIGURE E1. Correlations of predicted lung volume (pTLV) using gender and height only versus actual total lung volume (TLV) measured by 3-dimensional computed tomography volumetry in the testing group.