Advertisement

One-year results of thoracic endovascular aortic repair for blunt thoracic aortic injury (RESCUE trial)

Open ArchivePublished:September 18, 2014DOI:https://doi.org/10.1016/j.jtcvs.2014.09.026

      Objective

      One-year outcomes of the RESCUE trial (endovascular aortic repair using Valiant Captivia for blunt thoracic aortic injury) are reported.

      Methods

      RESCUE is a prospective, nonrandomized, multicenter trial. Fifty patients with blunt thoracic aortic injury were enrolled between April 2010 and January 2012. One-year outcomes included secondary procedures, device-, procedure-, and/or aorta-related adverse events, and all-cause mortality.

      Results

      Mean patient age was 40.7 ± 17.4 years; 76% of patients were male. Fifty-two thoracic stent grafts were implanted within a median of 1 day of injury. Seventy percent (35 of 50) of aortic injuries were grade III or higher, including 1 free rupture. The mean Injury Severity Score was 37.6 ± 14.3. Vascular access, device delivery, and deployment were successful in all patients. The left subclavian artery was completely covered in 40% (20 of 50) and partially covered in 18% of patients (9 of 50). There were no strokes or spinal cord injuries. Median procedure time was 90.5 minutes; median hospital stay was 11 days. All-cause mortality within 1 year was 12%. There were no conversions to open repair. Four patients (8%) had subclavian artery revascularization; 1 preoperatively; 3 others postoperatively on days 8, 36, and 103. There were no device-related adverse events. During follow-up, 1 patient (2%) had aortic-related and 9 patients (18%) had procedure-related adverse events.

      Conclusions

      TEVAR has favorable early midterm outcomes in the treatment of blunt thoracic aortic injury, and remains the treatment modality of choice. Longevity of the stent grafts in this young patient population has yet to be established.

      CTSNet classification

      Abbreviations and Acronyms:

      BTAI (blunt thoracic aortic injury), CEC (Clinical Events Committee), CT (computed tomography), CTA (computed tomographic angiography), CVA (cerebral vascular accident), ISS (Injury Severity Score), LSA (left subclavian artery), MRI (magnetic resonance imaging), TEVAR (thoracic endovascular aneurysm repair), RESCUE (Performancee of the Valiant Thoracic Stent Graft With the Captivia Delivery System for the Endovascular Treatment of BTAI)
      See related commentary on pages 161-2.
      Blunt thoracic aortic injury (BTAI) is caused by abrupt deceleration during a motor vehicle or motorcycle crash, a fall from a significant height, or other traumatic accidents. BTAI is the second leading cause of death in the United States from nonpenetrating trauma, with an estimated incidence of 7500 to 8000 cases per year.
      • Smith R.S.
      • Chang F.C.
      Traumatic rupture of the aorta: still a lethal injury.
      Up to 85% of patients involved in such incidents die before hospitalization.
      • Teixeira P.G.
      • Inaba K.
      • Barmparas G.
      • Georgiou C.
      • Toms C.
      • Noguchi T.T.
      • et al.
      Blunt thoracic aortic injuries: an autopsy study.
      A meta-analysis in 2011 reported that in-hospital mortality of patients managed nonoperatively was as high as 46%, whereas mortality was 9% in patients treated by endovascular repair and 19% for open repair.
      • Lee W.A.
      • Matsumura J.S.
      • Mitchell R.S.
      • Farber M.A.
      • Greenberg R.K.
      • Azizzadeh A.
      • et al.
      Endovascular repair of traumatic thoracic aortic injury: clinical practice guidelines of the Society for Vascular Surgery.
      In the past decade, thoracic endovascular aneurysm repair (TEVAR) has become an approach preferred by many clinicians for patients with BTAI because of its favorable early outcomes compared with open repair and nonoperative management in single-center series.
      • Demetriades D.
      • Velmahos G.C.
      • Scalea T.M.
      • Jurkovich G.J.
      • Karmy-Jones R.
      • Teixeira P.G.
      • et al.
      Diagnosis and treatment of blunt thoracic aortic injuries: changing perspectives.
      • Dunham M.B.
      • Zygun D.
      • Petrasek P.
      • Kortbeek J.B.
      • Karmy-Jones R.
      • Moore R.D.
      Endovascular stent grafts for acute blunt aortic injury.
      • Lawlor D.K.
      • Ott M.
      • Forbes T.L.
      • Kribs S.
      • Harris K.A.
      • DeRose G.
      Endovascular management of traumatic thoracic aortic injuries.
      • Neschis D.G.
      • Scalea T.M.
      • Flinn W.R.
      • Griffith B.P.
      Blunt aortic injury.
      • Mirvis S.E.
      • Shanmuganathan K.
      Diagnosis of blunt traumatic aortic injury 2007: still a nemesis.
      TEVAR offers several advantages in the treatment of BTAI in addition to low morbidity and mortality, particularly in the context of the delivery of acute trauma care and the treatment of multiple traumatic injuries.
      • Neschis D.G.
      • Moainie S.
      • Flinn W.R.
      • Scalea T.M.
      • Bartlett S.T.
      • Griffith B.P.
      Endograft repair of traumatic aortic injury-a technique in evolution: A single institution's experience.
      TEVAR is useful as a bridging or definitive therapy. Patient stabilization allows other competing traumatic injuries to be addressed. TEVAR is a rapid procedure that does not involve thoracotomy or lengthy complicated anesthesia and requires less blood transfusion than open repair.
      • Lee W.A.
      • Matsumura J.S.
      • Mitchell R.S.
      • Farber M.A.
      • Greenberg R.K.
      • Azizzadeh A.
      • et al.
      Endovascular repair of traumatic thoracic aortic injury: clinical practice guidelines of the Society for Vascular Surgery.
      In single-center series, the risk of paraplegia has also been reported to be reduced with TEVAR with rates of 0% to 2%, compared with 5% to 10% or more with open repair techniques.
      • Demetriades D.
      • Velmahos G.C.
      • Scalea T.M.
      • Jurkovich G.J.
      • Karmy-Jones R.
      • Teixeira P.G.
      • et al.
      Diagnosis and treatment of blunt thoracic aortic injuries: changing perspectives.
      • Doss M.
      • Wood J.P.
      • Balzer J.
      • Martens S.
      • Deschka H.
      • Moritz A.
      Emergency endovascular interventions for acute thoracic aortic rupture: Four-year follow-up.
      • Fabian T.C.
      Roger T. Sherman lecture. Advances in the management of blunt thoracic aortic injury: Parmley to the present.
      • Tang G.L.
      • Tehrani H.Y.
      • Usman A.
      • Katariya K.
      • Otero C.
      • Perez E.
      • et al.
      Reduced mortality, paraplegia, and stroke with stent graft repair of blunt aortic transections: a modern meta-analysis.
      • Xenos E.S.
      • Abedi N.N.
      • Davenport D.L.
      • Minion D.J.
      • Hamdallah O.
      • Sorial E.E.
      • et al.
      Meta-analysis of endovascular vs open repair for traumatic descending thoracic aortic rupture.
      Significant challenges remain regarding the mid- to long-term durability and longevity of TEVAR stent graft technology and the propensity for complications such as endoleak, migration, and device collapse and failure, along with the technical constraints associated with diameter sizing, coverage of the left subclavian artery (LSA), and access issues. Follow-up surveillance can also be problematic, and the requirements for early-to-midterm follow-up of patients who have undergone TEVAR for BTAI are poorly understood.
      • Lee W.A.
      • Matsumura J.S.
      • Mitchell R.S.
      • Farber M.A.
      • Greenberg R.K.
      • Azizzadeh A.
      • et al.
      Endovascular repair of traumatic thoracic aortic injury: clinical practice guidelines of the Society for Vascular Surgery.
      The purpose of the RESCUE Trial (Performancee of the Valiant Thoracic Stent-Graft With the Captivia Delivery System [Medtronic, Inc, Minneapolis, Minn] for the Endovascular Treatment of BTAI) is to capture and report TEVAR outcomes for BTAI for up to 5 years. This report focuses on outcomes from the first year of the RESCUE trial.

      Methods

      The RESCUE trial is a prospective, nonrandomized, North American multicenter trial of the Valiant Captivia Thoracic Stent-Graft System for the treatment of BTAI (ClinicalTrials.gov: NCT01092767). A total of 69 patients were screened for enrollment between April 14, 2010, and January 17, 2012, at 25 investigational sites. Ultimately, 50 patients were enrolled across 20 sites (19 sites in the United States and 1 in Canada), most of which were affiliated with level I trauma centers. The clinical backgrounds of the investigators included cardiothoracic surgery, vascular surgery, and interventional radiology.
      In 2013, we published the 30-day outcomes for both the primary and secondary end points from the RESCUE trial.
      • Khoynezhad A.
      • Azizzadeh A.
      • Donayre C.E.
      • Matsumoto A.
      • Velazquez O.
      • White R.
      • et al.
      Results of a multicenter, prospective trial of thoracic endovascular aortic repair for blunt thoracic aortic injury (RESCUE trial).
      The primary study end point in that report was 30-day all-cause mortality. Secondary end points included 30-day technical success, procedural/aortic injury-related adverse events, and aortic injury-related mortality. The current report focuses on the outcomes beyond 30 days and up to the first year of follow-up, specifically, secondary procedures, device-, procedure-, and aortic-related serious adverse events, and all-cause mortality.
      The trial was designed by the principal investigators and the sponsor. Data were collected by the sponsor. Before the trial was initiated, the RESCUE protocol and patient informed consent form were reviewed and approved by an appropriately constituted Institutional Review Board at each clinical site in the United States and by the Research Ethics Board at the Canadian site. All imaging analysis was performed by an independent core laboratory (M2S, Inc, West Lebanon, NH). Deaths were adjudicated by an independent Clinical Events Committee (CEC) at Harvard Clinical Research Institute (Boston, Mass), which also coordinated an independent data monitoring committee that reviewed adverse events associated with a death. The investigator determined relatedness for nonfatal adverse events. The first author prepared the first draft, which was then reviewed and edited by the other coauthors. The sponsor had the right to review but not to approve the final manuscript. The authors had full access to all data, accept full responsibility for the accuracy and completeness of the reported analyses and interpretations of the data, and vouch for the fidelity of the study to the protocol.

       Inclusion Criteria

      For inclusion, patients were required to be 18 years of age or older with informed consent offered through an Investigational Device Exemption approved by the US Food and Drug Administration or an Investigational Testing Authorization approved by Health Canada. Patients with BTAI were identified by preoperative computed tomographic angiography (CTA). The injury was confirmed by angiography or intravascular ultrasonography at the time of the procedure. The patient's aortic diameter (adventitia to adventitia) of the proximal and distal landing zones were required to be 18 to 44 mm. Iliac or femoral arteries were required to have sufficient diameter and patency to be used as access vessels as determined by computed tomography (CT) or the patient had to be deemed eligible for an iliac conduit. The distance between the distal margins of the left common carotid artery to the intimal disruption on center-of-flow imaging reconstruction was required to be 20 mm or more. Patients were also required to have undergone TEVAR within 30 days of injury.

       Exclusion Criteria

      Patients were excluded if they sustained a nonsurvivable injury/condition or if their Injury Severity Score (ISS) was nonspecific. Patients were also excluded if the covered portion of the stent graft cloth was planned to be placed over the celiac artery or the left common carotid artery (or the innominate artery in a case of bovine arch); if the patient presented with systemic infection or pregnancy, had a history of cerebral vascular accident (CVA) within 2 months before intervention, had a bleeding diathesis or coagulopathy, a known hypersensitivity or contraindication to anticoagulants or contrast media, allergy to the device components, a previous descending thoracic aortic intervention or operation, or participation in conflicting investigational drug or device clinical trials. Connective tissue disorders were not exclusory; inclusion of all emergency patients was deemed to more closely represent real-world clinical experience.

       Definitions

      We used the classification system described by Azizzadeh and colleagues in 2009
      • Azizzadeh A.
      • Keyhani K.
      • Miller 3rd, C.C.
      • Coogan S.M.
      • Safi H.J.
      • Estrera A.L.
      Blunt traumatic aortic injury: initial experience with endovascular repair.
      to define the extent of BTAI. Tears confined to the intima were classified as grade I, intramural hematomas as grade II, aortic pseudoaneurysms as grade III, and free ruptures as grade IV. The ISS overall score was used to describe a patient's probability of death due to multiple injuries.
      • Baker S.P.
      • O'Neill B.
      • Haddon Jr., W.
      • Long W.B.
      The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care.

       Follow-up

      The RESCUE trial follows survivors at intervals of 1, 6, and 12 months and annually thereafter for 5 years. Physical examination, adverse event evaluation, and CTA or magnetic resonance angiography are performed at each visit. Multiple-view chest radiographs are also acquired at 1, 3, and 5 years to assess device integrity.

       Statistical Methods

      For categorical variables, frequency and percentages are presented using descriptive statistics. For continuous variables, the number of observations, mean, standard deviation, median, minimum, and maximum are presented. Kaplan-Meier curves and log-rank tests were used to analyze the time to event for each survival outcome (all-cause and aortic-related mortality). Statistical significance was assessed by the log-rank statistic (α = 0.05). Outcome events were summarized at prespecified time points: within 30 days, within 1 year, and/or between 30 days and 1 year. Study data were analyzed using Statistical Analysis Software v. 9.2 (SAS Institute, Inc, Cary, NC).

      Results

      Of 69 screened patients, 50 were enrolled across 20 sites in the United States and Canada (Figure 1).
      • Khoynezhad A.
      • Azizzadeh A.
      • Donayre C.E.
      • Matsumoto A.
      • Velazquez O.
      • White R.
      • et al.
      Results of a multicenter, prospective trial of thoracic endovascular aortic repair for blunt thoracic aortic injury (RESCUE trial).
      All patients successfully received at least 1 device to cover the site of injury. No device malfunctions were reported. Two patients received 2 stent grafts each; all others received a single device. The first of these received 2 Valiant Captivia thoracic stent grafts, each 100 mm long. The second patient received a proximal Valiant Captivia stent graft and a distal Talent stent graft (Medtronic, Inc). Thirty-nine (90.7%) of the 43 eligible patients completed clinical follow-up and 35 (81.4%) underwent imaging at the 1-year time point.

       Patient Population

      Baseline demographic characteristics and medical history of all 50 patients are presented in Table 1. The mean age was 41 ± 17 years (range, 18-76 years); 76% (38 of 50) were male. The most commonly reported preexisting condition was hypertension (24%). Although 23 of 50 patients (46%) were reported to have other preexisting conditions, only 3 of these were cardiovascular related (2 with atrial fibrillation; 1 with an ascending aortic aneurysm). Preoperative paraplegia was reported in 1 patient and was attributed to a spinal fracture sustained in the traumatic event.
      Table 1Baseline demographic characteristics
      CharacteristicValue
      Age, y
       Mean ± SD40.7 ± 17.4
       Median (range)39.5 (18-76)
      Male, %76 (38 of 50)
      Ethnicity, %
       Hispanic or Latino20 (10 of 50)
      Race, %
       White68 (34 of 50)
       Black or African American20 (10 of 50)
       Asian4 (2 of 50)
       Other4.0 (2 of 50)
       Not available4.0 (2 of 50)
      Medical history, %
      Site-reported medical history; 1 patient (no. 182-001) died from injuries before answering medical history questions; 1 patient's (no. 325-003) gastrointestinal condition was listed as unknown.
       Hypertension24.5 (12 of 49)
       Chronic obstructive pulmonary disease4.1 (2 of 49)
       Gastrointestinal conditions2.1 (1 of 48)
       Paraplegia2.0 (1 of 49)
       Congestive heart failure2.0 (1 of 49)
       Diabetes2.0 (1 of 49)
       Stroke0.0 (0 of 49)
       Renal insufficiency0.0 (0 of 49)
       Myocardial infarction0.0 (0 of 49)
       Other conditions46.0 (23 of 50)
      SD, Standard deviation.
      Site-reported medical history; 1 patient (no. 182-001) died from injuries before answering medical history questions; 1 patient's (no. 325-003) gastrointestinal condition was listed as unknown.
      The injury characteristics are presented in Table 2. Most of the injuries were caused by a motor vehicle collision (60%) or a motorcycle incident (22%). Mean ISS was 38 ± 14 (range, 13-75). Most patients sustained grade III or grade IV injuries (70%). Most BTAIs (84%; 42 of 50) occurred in the proximal descending thoracic aorta (aortic isthmus); the remaining 16% (8 of 50) of patients sustained aortic injuries located in the distal half of the descending thoracic aorta. The anatomic characteristics are presented in Table E1 and were described previously.
      • Khoynezhad A.
      • Azizzadeh A.
      • Donayre C.E.
      • Matsumoto A.
      • Velazquez O.
      • White R.
      • et al.
      Results of a multicenter, prospective trial of thoracic endovascular aortic repair for blunt thoracic aortic injury (RESCUE trial).
      Table 2Baseline injury characteristics
      CharacteristicValue
      Duration from injury to procedure, d
       Mean ± SD1.8 ± 4.0
       Median (range)1.0 (0-23)
      Mechanism of blunt injury, %
       Motor vehicle accident60.0 (30 of 50)
       Motorcycle accident22.0 (11 of 50)
       Pedestrian hit by motor vehicle10.0 (5 of 50)
       Fall4.0 (2 of 50)
       Other4.0 (2 of 50)
      Extent of overall injuries
       Assigned Injury Severity Score
      Mean ± SD38.4 ± 14.4
      Median (range)35.0 (13-75)
      Extent of aortic injury, %
      Grade classification system15 used to describe extent of BTAI: grade I injury is confined to the intima; grade II is confined to the media and is associated with intramural hematoma; grade III is a pseudoaneurysm; grade IV represents frank aortic rupture with blood inside the pleural cavity.
       Grade I: intimal tear18 (9 of 50)
       Grade II: intramural hematoma12 (6 of 50)
       Grade III: aortic pseudoaneurysm68 (34 of 50)
       Grade IV: free rupture2 (1 of 50)
      Associated traumatic injuries, %
       Lung injury70 (35 of 50)
       Rib fracture64 (32 of 50)
       Abdominal injury (solid organ, bowel, bladder, or diaphragm injury)58 (29 of 50)
       Other50 (25 of 50)
       Head injury48 (24 of 50)
       Pelvic fracture40 (20 of 50)
       Long bone fracture38 (19 of 50)
       Unstable C/T/L spine fractures14 (7 of 50)
       Neurologic deficits12 (6 of 50)
       Scapula fracture8 (4 of 50)
       Sternum fracture6 (3 of 50)
      Location of aortic injury, %
       Isthmus (just distal to the left subclavian artery to the third intercostals artery)84 (42 of 50)
       Distal descending thoracic aorta16 (8 of 50)
      SD, Standard deviation.
      Grade classification system
      • Azizzadeh A.
      • Keyhani K.
      • Miller 3rd, C.C.
      • Coogan S.M.
      • Safi H.J.
      • Estrera A.L.
      Blunt traumatic aortic injury: initial experience with endovascular repair.
      used to describe extent of BTAI: grade I injury is confined to the intima; grade II is confined to the media and is associated with intramural hematoma; grade III is a pseudoaneurysm; grade IV represents frank aortic rupture with blood inside the pleural cavity.

       Procedural Data

      Fifty-one Medtronic Valiant Captivia thoracic stent grafts and 1 Talent thoracic stent graft were successfully implanted in 50 patients. Stent graft implantation was performed within a median of 1 day after injury (mean 1.8 ± 4.0 days; range, 0-23 days). General anesthesia was used in all 50 patients. The median duration of the procedure was 90.5 minutes (mean 102 ± 57.0 minutes). The median time in intensive care from admission to discharge was 6 days (mean 10.4 ± 16.2 days).
      The proximal stent graft piece was most commonly implanted in zone 2 (58%; 29 of 50), followed by zone 3 (36%; 18 of 50), zone 4 (4%; 2 of 50), and zone 1 (2.0%; 1 of 50). A proximal FreeFlo stent graft was used in all cases except 1 where a closed web tapered graft was mistakenly substituted; no complications were attributed to this.
      Technical success with regard to device access, delivery, and deployment was 100%. No conversions to open repair were needed and no retrograde type A dissections or aortic perforations were reported. The LSA was completely covered in 40% (20 of 50) of patients and partially covered in 18% (9 of 50). The LSA required revascularization in 8% (4 of 50) of patients.

       One-Year Outcomes

       Secondary procedures

      Within the first year, there were no secondary endovascular procedures or conversions to open repair (Table 3). However, 3 patients required LSA bypass to correct intermittent left arm ischemia on days 8, 36, and 103, respectively. All 3 of these bypasses were adjudicated to be procedure-related (Table E2).
      Table 3Study outcomes within 30 days and 1 year
      OutcomesWithin 30 daysWithin 1 year
      Secondary procedures
       Secondary endovascular reinterventions00
       Conversion to open repair00
       LSA bypass12
      Adverse events (%) related to
       Device00
       Procedure, and/or12 (6 of 50)6.5 (3 of 46)
       Aorta2.0 (1 of 50)0
      Mortality, %
       All-cause mortality8 (4 of 50)12 (6 of 50)
       Aorta-related mortality4 (2 of 50)4 (2 of 50)
      Technical success, %
       Successful delivery and deployment of the stent graft100 (50 of 50)NA
      Endoleak00
      Stent graft failure
       Kinking00
       Twisting00
       Fracture00
       Loss of patency00
       Migration
      The core laboratory reported 1 patient of 34 evaluable had a stent graft that migrated more than 10 mm beyond 30 days. Migration imaging only available from 30 days.
      > 10 mm
      NA2.9 (1 of 34)
      The core laboratory reported 1 patient of 34 evaluable had a stent graft that migrated more than 10 mm beyond 30 days. Migration imaging only available from 30 days.
      LSA, Left subclavian artery; NA, not applicable.
      The core laboratory reported 1 patient of 34 evaluable had a stent graft that migrated more than 10 mm beyond 30 days. Migration imaging only available from 30 days.

       Device, procedure, and/or aortic-related serious adverse events (nonfatal)

      There were no device-related adverse events. There were 9 procedure-related adverse events reported in 8 patients within the first year (6 procedure-related events in the first 30 days after the index procedure, and 3 between 30 days and 1 year). Two of these events were upper left arm peripheral ischemia, reported in patients 325-002 and 344-002, both of whom had intentional LSA coverage without previous revascularization. In addition, 2 patients who experienced claudication or no palpable radial pulse in the left arm also had intentional LSA coverage without previous revascularization. Four procedure-related events comprised confirmed injuries at the access sites: groin hematoma in patient 340-001, groin erythema in patient 325-003, femoral artery focal dissection in patient 005-003, and iliac vein laceration in patient 340-004 (Table E3). There was 1 site-reported aortic-related adverse event. Patient 340-004 developed anoxic brain injury caused by preoperative hypotension on the day of the procedure without spinal cord injury or reported CVA. Events are further described in Table E3.

       Technical observations

      During follow-up in the first year, no endoleaks were reported by the core laboratory or the sites, which reviewed the intra and postoperative imaging of all patients. In addition, no stent grafts were reported to kink, twist, fracture, or lose patency or integrity. Two type II endoleaks were reported by the end of the index procedure, both of which had resolved without treatment by the 30-day visit. The sites reported no cases of device migration within the aorta.

       All-cause mortality

      Within the first year, 6 (12%) patients died of any cause, 4 of whom (8%) died within the first 30 days after the index procedure (Table E4). Of these 4 deaths, 2 (182-001 and 344-003) were adjudicated by the CEC as not related to the device, procedure, and/or to the aorta. The death of patient 018-001 due to a right-sided hemothorax on postoperative day 1 was adjudicated by the CEC as aorta related. Because of the undocumented nature of the cause of death of patient 059-002 on day 22 outside the hospital, it was adjudicated as related to the procedure, the device, and the aorta. There were 2 deaths beyond 30 days (patient 339-003 died on day 59; 340-004 on day 169), both of whom had a total ISS score of 38. The CEC adjudicated both as unrelated to the device, the procedure, and/or to the aorta. The death of 2 patients (4% of all patients) within 30 days was adjudicated as aorta-related mortality. The circumstances of each patient's death are detailed in Table E4 and Appendix E1. Kaplan-Meier estimates of all-cause and aortic-related survival are presented in Figure 2.
      Figure thumbnail gr2
      Figure 2Kaplan-Meier estimate for all-cause mortality and aortic-related mortality. SE, Standard error.

      Discussion

      The RESCUE trial was designed to evaluate the outcomes of TEVAR for BTAI during a follow-up period of up to 5 years. In the past decade, the risk of paraplegia, a devastating complication, has been reported to be significantly reduced with TEVAR compared with open repair.
      • Demetriades D.
      • Velmahos G.C.
      • Scalea T.M.
      • Jurkovich G.J.
      • Karmy-Jones R.
      • Teixeira P.G.
      • et al.
      Diagnosis and treatment of blunt thoracic aortic injuries: changing perspectives.
      • Doss M.
      • Wood J.P.
      • Balzer J.
      • Martens S.
      • Deschka H.
      • Moritz A.
      Emergency endovascular interventions for acute thoracic aortic rupture: Four-year follow-up.
      • Fabian T.C.
      Roger T. Sherman lecture. Advances in the management of blunt thoracic aortic injury: Parmley to the present.
      • Tang G.L.
      • Tehrani H.Y.
      • Usman A.
      • Katariya K.
      • Otero C.
      • Perez E.
      • et al.
      Reduced mortality, paraplegia, and stroke with stent graft repair of blunt aortic transections: a modern meta-analysis.
      • Xenos E.S.
      • Abedi N.N.
      • Davenport D.L.
      • Minion D.J.
      • Hamdallah O.
      • Sorial E.E.
      • et al.
      Meta-analysis of endovascular vs open repair for traumatic descending thoracic aortic rupture.
      The reduced rate of spinal cord injury is most probably due to lack of aortic crossclamping with subsequent hypoperfusion of the spinal cord artery. In the present 1-year interim study, the rate of paraplegia or paraperesis was 0%. In addition, there were no CVAs, which may be attributed to the experienced team of investigators. Furthermore, the overall incidence of adverse events was favorably low: there were 9 procedure-related adverse events in 8 patients within the first year, 6 of which occurred in the first 30 days. The technical success rate was 100%, comparable with the literature reports of 96.5% to 100%.
      • Buz S.
      • Zipfel B.
      • Mulahasanovic S.
      • Pasic M.
      • Weng Y.
      • Hetzer R.
      Conventional surgical repair and endovascular treatment of acute traumatic aortic rupture.
      • Dake M.D.
      • White R.A.
      • Diethrich E.B.
      • Greenberg R.K.
      • Criado F.J.
      • Bavaria J.E.
      • et al.
      Report on endograft management of traumatic thoracic aortic transections at 30 days and 1 year from a multidisciplinary subcommittee of the Society for Vascular Surgery Outcomes Committee.
      Furthermore, there were no misaligned deployments, aortic perforations, retrograde type A dissections, conversions to open surgery, or endoleaks observed over the 1-year follow-up period, substantiating the safety of the newer generation of stent grafts.
      RESCUE's previously reported 30-day all-cause mortality of 8% compares favorably with the 13% early mortality rate reported in the 2008 American Association for the Surgery of Trauma trial,
      • Demetriades D.
      • Velmahos G.C.
      • Scalea T.M.
      • Jurkovich G.J.
      • Karmy-Jones R.
      • Teixeira P.G.
      • et al.
      Diagnosis and treatment of blunt thoracic aortic injuries: changing perspectives.
      and is comparable with the 6% to 10% 30-day all-cause mortality found elsewhere in the literature.
      • Tang G.L.
      • Tehrani H.Y.
      • Usman A.
      • Katariya K.
      • Otero C.
      • Perez E.
      • et al.
      Reduced mortality, paraplegia, and stroke with stent graft repair of blunt aortic transections: a modern meta-analysis.
      • Xenos E.S.
      • Abedi N.N.
      • Davenport D.L.
      • Minion D.J.
      • Hamdallah O.
      • Sorial E.E.
      • et al.
      Meta-analysis of endovascular vs open repair for traumatic descending thoracic aortic rupture.
      • Dake M.D.
      • White R.A.
      • Diethrich E.B.
      • Greenberg R.K.
      • Criado F.J.
      • Bavaria J.E.
      • et al.
      Report on endograft management of traumatic thoracic aortic transections at 30 days and 1 year from a multidisciplinary subcommittee of the Society for Vascular Surgery Outcomes Committee.
      • Hoffer E.K.
      • Forauer A.R.
      • Silas A.M.
      • Gemery J.M.
      Endovascular stent-graft or open surgical repair for blunt thoracic aortic trauma: Systematic review.
      • Leurs L.J.
      • Bell R.
      • Degrieck Y.
      • Thomas S.
      • Hobo R.
      • Lundbom J.
      • et al.
      Endovascular treatment of thoracic aortic diseases: combined experience from the EUROSTAR and United Kingdom Thoracic Endograft registries.
      The current 1-year data continue to support this, with a cumulative 1-year all-cause mortality rate of 12% compared with 14.4% in the literature.
      • Dake M.D.
      • White R.A.
      • Diethrich E.B.
      • Greenberg R.K.
      • Criado F.J.
      • Bavaria J.E.
      • et al.
      Report on endograft management of traumatic thoracic aortic transections at 30 days and 1 year from a multidisciplinary subcommittee of the Society for Vascular Surgery Outcomes Committee.
      There were no cases of device migration reported by the sites. However, 1 case of distal migration was reported by the core laboratory. The definition of migration of a thoracic endograft used by the core laboratory in this study was a change in centerline measurement from an adjacent artery branch to the top or bottom of the stent and is the standard for aneurysm reporting. Because migration was reported at only 1 end and there was no change in the span of the device, the observation is more suggestive of aortic lengthening rather than true migration. There were no clinical sequelae or interventions as a result of the reported apparent migration of the device.
      Aortic dilatation is another potential late complication. In a series of patients with BTAI and stent graft implantation, aortic dilatation of 0.84 mm/y at the stented zone was reported during a mean of 2.6 years follow-up (range, 1-5.5 years).
      • Forbes T.L.
      • Harris J.R.
      • Lawlor D.K.
      • Derose G.
      Aortic dilatation after endovascular repair of blunt traumatic thoracic aortic injuries.
      The authors concluded that such dilatation is likely a result of the injury itself in combination with the radial force of the stent graft.
      • Forbes T.L.
      • Harris J.R.
      • Lawlor D.K.
      • Derose G.
      Aortic dilatation after endovascular repair of blunt traumatic thoracic aortic injuries.
      In follow-up imaging in the RESCUE trial, no cases of aortic dilatation were observed. Long-term clinical follow-up after TEVAR in patients with BTAI, however, remains critical to the evaluation, and will be addressed in a subsequent study.
      Questions remain as to whether imaging itself could lead to complications of BTAI, with controversy on the optimal frequency and whether imaging is best performed by CT or magnetic resonance imaging (MRI). A single chest CT scan subjects the human body to an estimated average dose of 7 mSv of ionizing radiation (range, 4-18 mSv).
      • Mettler Jr., F.A.
      • Huda W.
      • Yoshizumi T.T.
      • Mahesh M.
      Effective doses in radiology and diagnostic nuclear medicine: a catalog.
      A single exposure of 10 mSv leads to cancer at a frequency of 1/1000.
      National Research Council (US)
      Committee to Assess Health Risks from Exposure to Low Level of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2.
      A 40-year-old trauma patient may live 30 years; the cumulative radiation dose from annual follow-up of 210 mSv significantly increases the risk of malignancy.
      • Miller L.E.
      Potential long-term complications of endovascular stent grafting for blunt thoracic aortic injury.
      The most recent clinical practice guidelines of the Society for Vascular Surgery
      • Lee W.A.
      • Matsumura J.S.
      • Mitchell R.S.
      • Farber M.A.
      • Greenberg R.K.
      • Azizzadeh A.
      • et al.
      Endovascular repair of traumatic thoracic aortic injury: clinical practice guidelines of the Society for Vascular Surgery.
      report that opinions among committee members “varied widely” regarding imaging frequency and type, leaving no clear-cut guideline for follow-up imaging. Rimon and colleagues
      • Rimon U.
      • Shinfeld A.
      • Gayer G.
      Traumatic injury of the thoracic aorta treated with stent-graft: Is long-term ct angiography follow-up justified?.
      reviewed 33 CTA examinations of 7 patients over a mean follow-up of 6.3 years. All stent grafts remained stable and devoid of complications. Over that time period, the average dose of radiation was 77 mSv (range, 34-129 mSv), which is likely an underestimation of the total radiation dose as it excluded acute-phase CTAs performed in the emergency department. The authors concluded that, given the durability of modern endovascular devices, routine CTA is not warranted and should be avoided after the initial years of follow-up.
      • Rimon U.
      • Shinfeld A.
      • Gayer G.
      Traumatic injury of the thoracic aorta treated with stent-graft: Is long-term ct angiography follow-up justified?.
      Imaging modalities such as magnetic resonance angiography or time-of-flight MRI are valuable alternatives and should be strongly considered after the initial confirmatory CT scan. Including these in the postoperative surveillance protocol presents an opportunity to curtail radiation and nephrotoxic contrast administration.

       Limitations

      RESCUE is a nonrandomized, single-arm, multicenter investigation reported with descriptive statistics only. Timing of TEVAR relative to operations for accompanying injuries was at the discretion of the trauma surgeons and the investigators. The 1-year data provide limited midterm experience obtained at high-volume sites with highly experienced investigators in North America. Although these 1-year results extend our understanding of device durability in this patient cohort past the initial 30-day experience previously published, further follow-up is critical. There are practical issues in following trauma patients, and RESCUE was not immune to loss to follow-up. At 1 year, accountability of clinical follow-up was 90.7% (39 of 43) and imaging accountability was 81.4% (35 of 43) in the same timeframe. Poor follow-up in this population is commonly reported and has been associated with poor socioeconomic status, lack of health insurance, and lack of family support.
      • Reich H.J.
      • Margulies D.R.
      • Khoynezhad A.
      Catastrophic outcome of de-novo aortic thrombus after stent grafting for blunt thoracic aortic injury.
      Without proper follow-up, rare but serious complications, such as aortic thrombus or retrograde type A aortic dissection, can be missed, precluding effective and life-saving interventions.
      • Reich H.J.
      • Margulies D.R.
      • Khoynezhad A.
      Catastrophic outcome of de-novo aortic thrombus after stent grafting for blunt thoracic aortic injury.
      • Khoynezhad A.
      • White R.A.
      Pathogenesis and management of retrograde type a aortic dissection after thoracic endovascular aortic repair.
      The treatment of patients with grade I BTAI with TEVAR is somewhat controversial. The natural history of grade I to II BTAIs shows that, although progression through higher grades up to and including death is possible, it is rare (roughly 5%), as reported by Osgood and colleagues
      • Osgood M.J.
      • Heck J.M.
      • Rellinger E.J.
      • Doran S.L.
      • Garrard III, C.L.
      • Guzman R.J.
      • et al.
      Natural history of grade I-II blunt traumatic aortic injury.
      in a subgroup of 49 patients with BTAI. Based on these data, clinical practice guidelines of the Society for Vascular Surgery recommend conservative management of grade I BTAI except in a subset of patients with head injuries in whom increased cerebral perfusion pressure is requested by neurosurgical colleagues. The inclusion of these patients in the RESCUE trial reflects the practice preference of many clinicians who opt for early treatment, particularly in patients with head injuries but also expresses clinician uncertainty on BTAI progression and related markers.

      Conclusions

      TEVAR for BTAI with the Medtronic Valiant Captivia device showed that the safety and stent graft durability reported at 30 days was continued during 1 year of follow-up. The results demonstrate favorable midterm outcomes with very low rates of adverse events and mortality rates comparable with those in the literature. TEVAR should remain the treatment modality of choice in anatomically suitable patients with BTAI and grade II and higher aortic injury. Follow-up of this patient cohort remains challenging, and the durability and longevity of the stent grafts in this young patient population has yet to be established.

      Appendix E1. Details of the Patients Who Died

       Patient 018-001 Died on Day 1 (ISS, 30; Grade III Aortic Injury)

      A 22-year-old man was thrown from a horse into a tree and sustained BTAI, bilateral hemothoraces, and a cardiac contusion. TEVAR was performed promptly on the same day. The patient died the following day from the severe right-sided hemothorax caused by a probable pulmonary vein injury. No additional aortic injury was found at autopsy. However, the independent CEC adjudicated death as related to the aortic injury, but unrelated to the device or procedure.

       Patient 182-001 Died on Day 1 (ISS, 50; Grade III Aortic Injury)

      A 68-year-old male pedestrian was struck by a motorcycle and sustained BTAI and a head injury. TEVAR was performed promptly on the same day and was successful, but the patient died the following day from an unrelated cause. The CEC adjudicated death to be unrelated to the aortic injury, device, or the procedure.

       Patient 344-033 Died on Day 5 (ISS, 29; Grade III Aortic Injury)

      A 23-year-old man sustained BTAI in a motorcycle crash and multiple other injuries, including a right hemopneumothorax, deformities in both legs, and multiple fractures of the femur. TEVAR was performed promptly on the same day and was successful, but the patient died on day 5 from cardiac arrhythmia. The CEC adjudicated death as unrelated to the aortic injury, device, or procedure.

       Patient 059-002 Died on Day 22 (ISS, 34; Grade III Aortic Injury)

      A 67-year-old woman sustained a BTAI in a motor vehicle accident with multiple other injuries, including a distal dissection extending into the abdominal aorta, bilateral hemothoraces, a fractured occipital condyle, subarachnoid hemorrhage, T1 spinal fracture, and a liver laceration, among other abdominal injuries. TEVAR was performed promptly on the same day and was successful, with no endoleaks and some perfusion into the false lumen of the abdominal aorta. Follow-up CT imaging before discharge confirmed no endoleak. The patient had a history of atrial fibrillation and recent pulmonary embolus on subtherapeutic warfarin. The patient was discharged 1 week after the procedure to an acute care facility. The patient died on day 22 of unexplained causes. No autopsy was performed so the cause of death could not be established. The CEC conservatively adjudicated death as related to the aortic injury, device, or procedure because of the limited clinical data available.

       Patient 339-003 Died on Day 59 (ISS, 38, Grade III Aortic Injury)

      A 76-year-old man sustained a BTAI in a motor vehicle accident. The patient sustained several injuries including an aortic injury, multiple bilateral rib fractures, facial bone fractures, possible skull fracture and subarachnoid hemorrhage, lung contusions, left femoral acetabular fracture/dislocation, and other multiple pelvic fractures. TEVAR was performed promptly on the same day and was successful. Pertinent medical history included congestive heart failure, atrial fibrillation, anticoagulant therapy, anemia, chronic obstructive pulmonary disease, and lung cancer, for which he was receiving chemotherapy and radiation therapy. A tracheostomy was performed 5 days after the procedure because he was unable to breathe independently. A percutaneous endoscopic gastrostomy tube was placed for nutritional support and he was discharged to a specialty care facility on day 14. The patient remained nonambulatory and could not be weaned from ventilation, later developing encephalopathy of unclear origin and fevers. Antibiotics were adjusted accordingly. Follow-up chest radiography was performed on day 39 and the device was observed to be intact and stable, although endoleak could not be assessed. The patient's family decided to withdraw treatment and provide comfort measures; ventilation and other treatment ceased, and the patient died later that day (day 59), with cause of death attributed to respiratory failure secondary to pneumonia and underlying chronic obstructive pulmonary disease and lung cancer exacerbated by the motor vehicle accident. The CEC adjudicated the death to be unrelated to the device, procedure or the aorta.

       Patient 340-004 Died on Day 169 (ISS, 38; Grade III Aortic Injury)

      A 74-year-old woman sustained a BTAI in a motor vehicle accident. The patient sustained several injuries including head injury, chest and abdominal injuries, and extremity injuries. TEVAR was performed 1 day after the injury with successful implantation of 2 stent grafts. On day 24, the patient was moved to an acute care facility. Four months later, she was admitted to the emergency room with significant leukocytosis and bowel ischemia secondary to bowel obstruction, at which point the family decided on a do not resuscitate order. The cause of death was reported by the site to be infection unrelated to the aorta, procedure, or to the device. The CEC adjudicated the death as unrelated to the aorta, procedure, or to the device.

       Patient 325-001 Died on Day 1086 (ISS, 41; Grade III Aortic Injury)

      A 41-year-old man sustained a BTAI in a motor vehicle accident. In addition to an aortic injury; he sustained a right hemothorax, a left hemothorax, a small intestine injury, an adrenal injury, bladder rupture, a pelvic fracture, a tibial plateau fracture, an anterior cruciate ligament tear, and anemia of acute blood loss. The acute aortic injury was described as located at the isthmus and further described as an aortic pseudoaneurysm. The patient underwent open reduction with internal fixation of the pelvis and bladder repair and reanastomosis of the small bowel. TEVAR was then performed and was successful. Final angiography revealed successful exclusion of the pseudoaneurysm with no evidence of dissection, perforation, misaligned deployment, kinking or twisting, and no endoleak. No device malfunctions were reported. There were no further postprocedure complications and the patient was discharged to a rehabilitation facility on day 33 after TEVAR. The patient had 1-month, 6-month, 12-month, and 24-month follow-up visits; the device was intact with no evidence of an endoleak, fracture, migration, twisting, kinking, or occlusion. No adverse events were reported. On day 1047, the patient presented to the emergency room after experiencing a seizure. The seizure was presumed to be secondary to brain metastasis from his stage IV prostate cancer. After discussion with the patient and family; the decision was reached that no aggressive therapies or testing would be done and that a do not resuscitate order would be placed. Care and comfort measures were initiated. On day 1048, he was admitted to an inpatient hospice unit for care. On day 1086, the patient died. The Death Certificate identifies the immediate cause of death as recurrent metastatic prostate cancer. No autopsy was performed. The CEC adjudicated the death as unrelated to the device, procedure, or the aorta.

      APPENDIX E2.

      Tabled 1
      Principal investigatorSiteCityPatients enrolled
      Robert Allen, MDPresbyterian HospitalCharlotte, NC
      Ali Azizzadeh, MDMemorial Hermann Heart and Vascular InstituteHouston, Tex5
      Clifford J. Buckley, MDScott and White Memorial HospitalTemple, Tex2
      François Dagenais, MDInstitut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec City, Québec2
      Robert J. Feezor, MDUniversity of FloridaGainesville, Fla2
      William D. Jordan, MDUniversity of Alabama HospitalBirmingham, Ala1
      Robert Hieb, MDMedical College of Wisconsin Froedtert HospitalMilwaukee, Wis3
      G. Chad Hughes, MDDuke University Medical CenterDurham, NC2
      Ali Khoynezhad, MD, PhDCedars-Sinai Medical CenterLos Angeles, Calif1
      Joseph V. Lombardi, MDCooper Health SystemCamden, NJ3
      Alan H. Matsumoto, MDUniversity of Virginia Medical CenterCharlottesville, Va5
      Ernest Moore, MDDenver HeathDenver, Colo3
      Bart E. Muhs, MDYale New Haven HospitalNew Haven, Conn3
      Jean M. Panneton, MDSentara Norfolk General Vascular & Transplant SpecialistsNorfolk, Va1
      Himanshu J. Patel, MDRegents of the University of MichiganAnn Arbor, Mich2
      John P. Pigott, MDToledo Hospital Jobst Vascular CenterToledo, Ohio1
      Joshua Rovin, MDCardiac Surgical Associates Bayfront Medical CenterSt Petersberg, Fla3
      Marc L. Schermerhorn, MDBeth Israel Deaconess Medical CenterBoston, Mass1
      Nirman Tulsyan, MDVascular Research Institute Morristown MemorialMorristown, NJ1
      Omaida C. Velazquez, MDUniversity of Miami Jackson Memorial HospitalMiami, Fla4
      Rodney A. White, MDHarbor UCLATorrance, Calif5
      Table E1Anatomic characteristics (core laboratory reported)
      CategoryValue
      Distance from left subclavian artery to injury, mm
       No.50
       Mean ± SD15.0 ± 9.4
       Median (range)13.5 (0-36)
      Aortic diameter 20 mm proximal to injury, mm
       No.50
       Mean ± SD24.3 ± 3.9
       Median (range)23.5 (18-35)
      Maximum descending thoracic artery diameter, mm
       No.50
       Mean ± SD24.3 ± 3.9
       Median (range)23.5 (18-35)
      SD, Standard deviation.
      Table E2Secondary procedures (3 cases of carotid to subclavian bypass only)
      Only 3 carotid to subclavian secondary procedures were required. Within 1 year, no secondary endovascular reinterventions were performed, nor were there any conversions to open repair. One patient required preoperative carotid to subclavian bypass.
      Days from implantReasonSecondary procedure performedRelated to device?Related to aorta?Related to procedure?
      8Peripheral ischemiaLeft carotid to subclavian bypassNoNoYes
      36Peripheral ischemiaLeft carotid to subclavian bypassNoNoYes
      103Intermittent claudicationLeft carotid to subclavian bypassNoNoYes
      Only 3 carotid to subclavian secondary procedures were required. Within 1 year, no secondary endovascular reinterventions were performed, nor were there any conversions to open repair. One patient required preoperative carotid to subclavian bypass.
      Table E3Details of the adverse events
      PatientAdverse eventDays after procedureSerious?Related to device, procedure, or aortic injury?Action taken
      Adverse events ≤30 d, related to the device, procedure, or aortic injury
       005-003Focal dissection of the common femoral artery0YesProcedureThrombectomy and Dacron patch
       340-001Hematoma0NoProcedureNone
       340-004Anoxic brain injury (rupture just before procedure)0YesAortic injuryInitial stent graft placement
       340-004Iliac vein laceration
      A procedure-related adverse event occurred in patient 340-004 when an angle clamp lacerated the right iliac vein during access. The injury was repaired and the patient recovered.
      0YesProcedureSurgical repair
       325-003Erythema at groin incision4NoProcedureMedication
       325-002Peripheral ischemia7YesProcedureCarotid to subclavian bypass
       112-004Arm claudication30YesProcedureCarotid to subclavian bypass
      Additional serious adverse events >30 d, reported to date, related to the device, procedure, or aortic injury
       344-002Upper limb ischemia36YesProcedureCarotid to subclavian bypass
       325-003Lack of palpable pulse in arm39NoProcedureNone
       340-004Bowel infection (leading to death at 169 d)167YesUnrelatedNone
       5010-002Peripheral Ischemia (calf pain)172YesProcedureExternal angioplasty on day 406
      A procedure-related adverse event occurred in patient 340-004 when an angle clamp lacerated the right iliac vein during access. The injury was repaired and the patient recovered.
      Table E4All-cause mortality
      PatientTime to death, daysCause of death, site reportedDeath relatedness, site reportedDeath relatedness, adjudicated by the Clinical Events Committee
      018-0011HemothoraxNot relatedAortic injury
      182-0011Traumatic brain InjuryNot relatedNot related
      344-0035ArrhythmiaNot relatedNot related
      059-00222Complications of multiple blunt force injuriesNot evaluable. Device related. Not evaluable. Aorta related. Not related to procedureDevice, procedure, aortic injury
      339-00359Respiratory failure
      The 76-year-old man who died on day 59 as a result of respiratory failure had a medical history of atrial fibrillation requiring anticoagulant therapy, congestive heart failure, anemia, chronic obstructive pulmonary disease, and lung cancer and had been receiving chemotherapy and radiotherapy. The motor vehicle accident caused blunt thoracic aortic injury, lung contusions, multiple pelvic fractures, a left femoral acetabular fracture/dislocation, and possible skull fracture and subarachnoid hemorrhage. Total Injury Severity Score, 38.
      Not relatedNot related
      340-004169InfectionNot relatedNot related
      325-0011095Seizure
      The death after a seizure is pending adjudication.
      Not relatedPending adjudication
      The 76-year-old man who died on day 59 as a result of respiratory failure had a medical history of atrial fibrillation requiring anticoagulant therapy, congestive heart failure, anemia, chronic obstructive pulmonary disease, and lung cancer and had been receiving chemotherapy and radiotherapy. The motor vehicle accident caused blunt thoracic aortic injury, lung contusions, multiple pelvic fractures, a left femoral acetabular fracture/dislocation, and possible skull fracture and subarachnoid hemorrhage. Total Injury Severity Score, 38.
      The death after a seizure is pending adjudication.

      References

        • Smith R.S.
        • Chang F.C.
        Traumatic rupture of the aorta: still a lethal injury.
        Am J Surg. 1986; 152: 660-663
        • Teixeira P.G.
        • Inaba K.
        • Barmparas G.
        • Georgiou C.
        • Toms C.
        • Noguchi T.T.
        • et al.
        Blunt thoracic aortic injuries: an autopsy study.
        J Trauma. 2011; 70: 197-202
        • Lee W.A.
        • Matsumura J.S.
        • Mitchell R.S.
        • Farber M.A.
        • Greenberg R.K.
        • Azizzadeh A.
        • et al.
        Endovascular repair of traumatic thoracic aortic injury: clinical practice guidelines of the Society for Vascular Surgery.
        J Vasc Surg. 2011; 53: 187-192
        • Demetriades D.
        • Velmahos G.C.
        • Scalea T.M.
        • Jurkovich G.J.
        • Karmy-Jones R.
        • Teixeira P.G.
        • et al.
        Diagnosis and treatment of blunt thoracic aortic injuries: changing perspectives.
        J Trauma. 2008; 64 (discussion 18-19): 1415-1418
        • Dunham M.B.
        • Zygun D.
        • Petrasek P.
        • Kortbeek J.B.
        • Karmy-Jones R.
        • Moore R.D.
        Endovascular stent grafts for acute blunt aortic injury.
        J Trauma. 2004; 56: 1173-1178
        • Lawlor D.K.
        • Ott M.
        • Forbes T.L.
        • Kribs S.
        • Harris K.A.
        • DeRose G.
        Endovascular management of traumatic thoracic aortic injuries.
        Can J Surg. 2005; 48: 293-297
        • Neschis D.G.
        • Scalea T.M.
        • Flinn W.R.
        • Griffith B.P.
        Blunt aortic injury.
        N Engl J Med. 2008; 359: 1708-1716
        • Mirvis S.E.
        • Shanmuganathan K.
        Diagnosis of blunt traumatic aortic injury 2007: still a nemesis.
        Eur J Radiol. 2007; 64: 27-40
        • Neschis D.G.
        • Moainie S.
        • Flinn W.R.
        • Scalea T.M.
        • Bartlett S.T.
        • Griffith B.P.
        Endograft repair of traumatic aortic injury-a technique in evolution: A single institution's experience.
        Ann Surg. 2009; 250: 377-382
        • Doss M.
        • Wood J.P.
        • Balzer J.
        • Martens S.
        • Deschka H.
        • Moritz A.
        Emergency endovascular interventions for acute thoracic aortic rupture: Four-year follow-up.
        J Thorac Cardiovasc Surg. 2005; 129: 645-651
        • Fabian T.C.
        Roger T. Sherman lecture. Advances in the management of blunt thoracic aortic injury: Parmley to the present.
        Am Surg. 2009; 75: 273-278
        • Tang G.L.
        • Tehrani H.Y.
        • Usman A.
        • Katariya K.
        • Otero C.
        • Perez E.
        • et al.
        Reduced mortality, paraplegia, and stroke with stent graft repair of blunt aortic transections: a modern meta-analysis.
        J Vasc Surg. 2008; 47: 671-675
        • Xenos E.S.
        • Abedi N.N.
        • Davenport D.L.
        • Minion D.J.
        • Hamdallah O.
        • Sorial E.E.
        • et al.
        Meta-analysis of endovascular vs open repair for traumatic descending thoracic aortic rupture.
        J Vasc Surg. 2008; 48: 1343-1351
        • Khoynezhad A.
        • Azizzadeh A.
        • Donayre C.E.
        • Matsumoto A.
        • Velazquez O.
        • White R.
        • et al.
        Results of a multicenter, prospective trial of thoracic endovascular aortic repair for blunt thoracic aortic injury (RESCUE trial).
        J Vasc Surg. 2013; 57: 899-905.e1
        • Azizzadeh A.
        • Keyhani K.
        • Miller 3rd, C.C.
        • Coogan S.M.
        • Safi H.J.
        • Estrera A.L.
        Blunt traumatic aortic injury: initial experience with endovascular repair.
        J Vasc Surg. 2009; 49: 1403-1408
        • Baker S.P.
        • O'Neill B.
        • Haddon Jr., W.
        • Long W.B.
        The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care.
        J Trauma. 1974; 14: 187-196
        • Buz S.
        • Zipfel B.
        • Mulahasanovic S.
        • Pasic M.
        • Weng Y.
        • Hetzer R.
        Conventional surgical repair and endovascular treatment of acute traumatic aortic rupture.
        Eur J Cardiothorac Surg. 2008; 33: 143-149
        • Dake M.D.
        • White R.A.
        • Diethrich E.B.
        • Greenberg R.K.
        • Criado F.J.
        • Bavaria J.E.
        • et al.
        Report on endograft management of traumatic thoracic aortic transections at 30 days and 1 year from a multidisciplinary subcommittee of the Society for Vascular Surgery Outcomes Committee.
        J Vasc Surg. 2011; 53: 1091-1096
        • Hoffer E.K.
        • Forauer A.R.
        • Silas A.M.
        • Gemery J.M.
        Endovascular stent-graft or open surgical repair for blunt thoracic aortic trauma: Systematic review.
        J Vasc Interv Radiol. 2008; 19: 1153-1164
        • Leurs L.J.
        • Bell R.
        • Degrieck Y.
        • Thomas S.
        • Hobo R.
        • Lundbom J.
        • et al.
        Endovascular treatment of thoracic aortic diseases: combined experience from the EUROSTAR and United Kingdom Thoracic Endograft registries.
        J Vasc Surg. 2004; 40 (discussion 679-80): 670-679
        • Forbes T.L.
        • Harris J.R.
        • Lawlor D.K.
        • Derose G.
        Aortic dilatation after endovascular repair of blunt traumatic thoracic aortic injuries.
        J Vasc Surg. 2010; 52: 45-48
        • Mettler Jr., F.A.
        • Huda W.
        • Yoshizumi T.T.
        • Mahesh M.
        Effective doses in radiology and diagnostic nuclear medicine: a catalog.
        Radiology. 2008; 248: 254-263
        • National Research Council (US)
        Committee to Assess Health Risks from Exposure to Low Level of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2.
        National Academies Press, Washington, DC2006: 8 (Available at:)
        • Miller L.E.
        Potential long-term complications of endovascular stent grafting for blunt thoracic aortic injury.
        ScientificWorldJournal. 2012; 2012: 897489
        • Rimon U.
        • Shinfeld A.
        • Gayer G.
        Traumatic injury of the thoracic aorta treated with stent-graft: Is long-term ct angiography follow-up justified?.
        Clin Radiol. 2014; 69: e207-e210
        • Reich H.J.
        • Margulies D.R.
        • Khoynezhad A.
        Catastrophic outcome of de-novo aortic thrombus after stent grafting for blunt thoracic aortic injury.
        Ann Thorac Surg. 2014; 98: e139-e141
        • Khoynezhad A.
        • White R.A.
        Pathogenesis and management of retrograde type a aortic dissection after thoracic endovascular aortic repair.
        Ann Vasc Surg. 2013; 27: 1201-1206
        • Osgood M.J.
        • Heck J.M.
        • Rellinger E.J.
        • Doran S.L.
        • Garrard III, C.L.
        • Guzman R.J.
        • et al.
        Natural history of grade I-II blunt traumatic aortic injury.
        J Vasc Surg. 2014; 59: 334-341