Letters to the Editor

Major points:

1. Dr. Anthony Atala has a New York Times article describing our work. Dr. Atala's view is much better balanced than this one.

2. Dr. Macchiarini describes our work as vain, but the treatment of a tracheal transplant patient seems to have reached investigative journalists of Science and other media.

3. More important, the purpose of our editorial was to inform the scientific community that regeneration of a viable trachea resulting from applying bone marrow cells to a decellularized or a synthetic scaffold in the absence of any blood supply is based on hope and belief and not on scientific evidence. None of the publications that Macchiarini cites in his response provide scientific evidence for his claim. We therefore strongly warn against further unethical human experimentation. The ongoing clinical trials will show whether or not this warning was justified.

4. We therefore strongly warn against further unethical human experimentation. The ongoing clinical trials will show whether or not this warning was justified.

5. Pierre Delaere, MD, PhD

Pierre Delaere, MD, PhD

Advanced Center for Translational Regenerative Medicine

Division of Ear, Nose and Throat

Department for Clinical Science Intervention and Technology

Karolinska Institutet

Stockholm, Sweden

MODIFIABLE RISK FACTORS FOR ACUTE KIDNEY INJURY AFTER CORONARY ARTERY BYPASS GRAFTING

To the Editor:

We read with interest the recent article by Ng and colleagues that identified modifiable risk factors for acute kidney injury (AKI) after coronary artery bypass grafting (CABG) in an Asian population. They showed that preoperative anemia and intraoperative lowest hematocrit were potentially modifiable risk factors independently associated with postoperative AKI. In the design of this study, however, some important data regarding patient perioperative management, such as intraoperative hemodynamic changes, fluid volume, and use of vasoactive medicines, were evidently missing. It has been shown that intraoperative systolic blood pressure decrease relative to baseline is independently associated with postoperative AKI in patients undergoing CABG. Furthermore, the combination of intraoperative hemodilution anemia and hypotension can synergistically act to increase the risk of AKI after cardiac surgery. Campbell and associates have demonstrated that fluid volume before cardiopulmonary bypass can contribute significantly to intraoperative hemodilution anemia and that restricting fluid volume before cardiopulmonary bypass can attenuate intraoperative hemodilution anemia and decrease the need for transfusion in patients undergoing CABG. In addition, perioperative inotropes, vasopressors, antiarrhythmics, and diuretics may also influence development of AKI after cardiac surgery.

We therefore argue that optimizing perioperative management, such as intraoperative avoidance of excess fluid volume, hypotension, and renal arterial vasoconstrictive drugs, should be importantly modifiable factors in decreasing the occurrence of postoperative AKI in patients undergoing CABG. We believe that the results of this study would have been more informative had these factors been taken into account.

Ng and colleagues did not mention the specific timing of postoperative creatinine measurements. It was also unclear whether continuous creatinine measurements were performed. It is therefore difficult to determine whether the cases of AKI reported in this study were due to intraoperative or postoperative factors. Although serum creatinine lags behind acute changes in renal function, AKI (defined by serum creatinine >10 mmol/L greater than normal values)
caused by intraoperative factors can be often detected between 1 and 3 days after surgery. Thereafter, the AKI is more likely to be attributable to postoperative factors, such as hemodynamic instability, anemia, transfusion, and so on. Westenbrink and coworkers have found that postoperative anemia is common after CABG, frequently persists for months, and is associated with impaired postoperative outcomes. We therefore emphasize that efforts to avoid the modifiable risk factors for AKI should be continued in the postoperative period to prevent new AKI or aggravation of existing kidney injury by postoperative factors, especially for patients who are at high risk for AKI.

Fu-Shan Xue, MD
Rui-Ping Li, MD
Gao-Pu Liu, MD
Department of Anesthesiology
Plastic Surgery Hospital
Chinese Academy of Medical Sciences and Peking Union Medical College
Beijing, China

Reply to the Editor:

We thank Xue and colleagues for their interest in our publication, in which we showed the potential modifiable risk factors of acute kidney injury (AKI) after coronary artery bypass grafting. We focus on the effects of 3 known modifiable risk factors, the lowest hematocrit during cardiopulmonary bypass (CPB), preoperative anemia, and intraoperative red blood cell transfusion, on postoperative AKI in our Asian patient population with smaller average body size. As such, we did not look in this study specifically at the effects of intraoperative hemodynamic changes and their potentiation of hemodilutional anemia to result in postoperative AKI. The intraoperative systolic blood pressure was typically maintained within a tight range of 100 to 130 mm Hg, however, it is likely that a greater decrease in systolic blood pressure would be present in hypertensive patients. We also showed a history of hypertension to be an independent risk factor for AKI, albeit an unmodifiable factor.

We are cognizant that liberal pre-CPB crystalloid infusion may result in hemodilution, especially for patients with smaller body size. Although the pre-CPB crystalloid infusion volume was not recorded, it was standard practice to give no more than 1000 mL of crystalloid before CPB.

The influences on AKI of perioperative medications, such as diuretics, inotropes, statins and antiarrhythmics, were studied. Of these, only loop diuretics were significantly associated with AKI in the univariate analysis presented in our article. None of the medications were independently associated with AKI in the multivariate analysis.

In our study, postoperative creatinine measurements were done routinely in the intensive care unit in accordance with institutional protocol. Continuous creatinine measurements were not done. The peak serum creatinine was the highest creatinine value obtained within the first 3 postoperative days and was used to calculate against the preoperative serum creatinine to determine whether a patient had postoperative AKI. AKI was defined according to the Acute Kidney Injury Network (AKIN) stage 1 criteria in this study.

To compare postoperative AKI incidence with other study cohorts, we had to use a uniform and standard classification of AKI. Numerous articles have used either the RIFLE (Risk, Injury, Failure, Loss of function, and End-stage renal disease) or AKIN criteria to define AKI. We chose the AKIN criteria because they account for smaller changes in serum creatinine, which is shown to be associated with adverse outcomes such as mortality. Moreover, the AKIN criteria use a shorter time frame of 48 hours to assess renal function than the RIFLE criteria, which has a 7-day window period for AKI diagnosis.

We found that not only was postoperative anemia associated with postoperative AKI, it was independently associated with the persistence of AKI up until hospital discharge (unpublished data). We therefore agree that strategies to improve postoperative anemia can reduce the persistence of AKI and prevent the subsequent development of chronic kidney disease in cardiac surgical patients.

Roderica Rui Ge Ng
Sophia Tsong Huey Chew, MBBS, MMed, FANZCA
Weiling Liu, BSc(Hons)
Liang Shen, PhD
Lian Kah Ti, MBBS, Mmed

aYong Loo Lin School of Medicine National University of Singapore Singapore, Republic of Singapore
bDepartment of Anesthesia and Surgical Intensive Care

References
7. http://dx.doi.org/10.1016/j.jtcvs.2014.03.047