A practical method of measuring oxygen consumption in children with complex mixing circulations by the use of thermodilution cardiac output studies

Daryl I. Schantz, MD, and Robert P. Chen, MD

Objective: We describe a method to measure oxygen consumption (VO2) and pulmonary vascular resistive index (PVRI) based on thermodilution cardiac output in patients with complex mixing circulations. We apply this method to patients with a bidirectional cavopulmonary anastomosis (BDCPA). We compare our measured VO2 with a predicted VO2 based on a formula using height and weight.

Methods: We reviewed data based on cardiac catheterization and thermodilution cardiac output in a series of 25 catheterizations in patients with BDCPA. We used this data to measure VO2 and PVRI, and looked for a correlation between the predicted and measured VO2. We also assessed whether any other hemodynamic parameter correlated with measured VO2.

Results: There was no significant correlation between the predicted and the measured VO2 (correlation coefficient $=-0.258, P = .21$). We did find a significant correlation in the difference between the measured and predicted VO2 against the measured VO2 such that at a lower measured VO2 the predictive formula tended to overestimate VO2 and at a higher VO2 the formula underestimated VO2 (correlation coefficient $=0.963, P <.0001$). Body surface area did not correlate with measured VO2 (correlation coefficient $=0.28, P <.16$). Mixed venous oxygen content showed a weak negative correlation with VO2 (correlation coefficient $=-0.54, P = .005$).

Conclusions: An assessment of PVRI that is based on a predicted VO2 is unreliable in this patient population. No hemodynamic parameter correlated well with VO2. The use of a measured VO2 is necessary in determining PVRI in these patients. (J Thorac Cardiovasc Surg 2013;146:1179-84)

The assessment of pulmonary blood flow and pulmonary vascular resistance (PVR) in complex mixing circulations is challenging. Still, this assessment remains an important aspect in risk stratification prior to staged surgical palliation via bidirectional cavopulmonary anastomosis (BDCPA) and the Fontan procedure. Typically, this assessment is done by combining cardiac catheterization data with the use of a predicted oxygen consumption (VO2) from one of several predictive formulas because methods of direct measurement of VO2 are complicated and require expensive equipment and operator expertise.

We report a previously undescribed method of calculating PVR and VO2. We compare this measured VO2 with a standard predicted VO2 based on the formula described by Krovets and Goldbloom.1 We demonstrate how we can calculate PVR based on thermodilution cardiac output studies in patients with BDCPA. This method can be used in many complex mixing circulations to calculate flows and resistances in the systemic or pulmonary vascular beds. We examined hemodynamic parameters that might predict VO2 in BDCPA.

METHODS
Assessing the Pulmonary Vascular Resistive Index (PVRI)

Assessment of PVR in a normal circulation is based on the application of Ohm’s law:

$$PVR = \frac{\Delta P}{Q_b},$$

where R is resistance, ΔP is the mean transpulmonary pressure gradient, and Q_b is pulmonary blood flow.

Pressure is obtained by direct measurement. Pulmonary blood flow equals VO2 divided by the difference in oxygen content please insert “(cO_2)” in the pulmonary veins and in the main pulmonary artery:

$$Q_b = \frac{V_O2}{(cO_2_{PV} - cO_2_{PA})},$$

where cO2 is the content of oxygen, PV is the pulmonary vein, and PA is the pulmonary artery.

VO2 can be measured using indirect calorimetry with a Douglas bag, or with tandem mass spectrometry. These methods measure the inspired and expired oxygen content directly, but they are time-consuming, and many centers do not have tandem mass spectrometry to perform such measurements. Oxygen consumption can also be predicted using one of a number of formulas, including those by Lafarge and Miettinen,1 Lundell and
colleagues, Lindahl, Wessel and associates, and Krovets and Goldberg. A predictive formula for VO$_2$ does not require complex measurements, which makes them an attractive solution for obtaining VO$_2$. However, it has been shown that these formulas are unreliable when compared with measured VO$_2$ in children with congenital heart defects.

Laitinen and Rasanen, who compared the formulas by Lindahl, Wessel and associates, Lundell and colleagues, and Lafarge and Miettinen against respiratory mass spectrometry in children with congenital heart disease found the predictive formulas to be unreliable. In the latter study, the predictive formulas were found to overestimate lower and underestimate higher indexed VO$_2$.

Minute Oxygen Delivery

The search for a simple, noninvasive measurement of cardiac output is ongoing. Invasive measurement by thermodilution studies are possible and require little additional time or expense for patients who are undergoing planned cardiac catheterization. Thermodilution-derived measurements of cardiac output have generally been found to have good agreement with measured VO$_2$. However, it has been shown that these formulas are unreliable when compared with measured VO$_2$ in children with congenital heart defects.

In BDCPA, it is possible to measure systemic ventricular output (QV) using thermodilution cardiac output studies, but QV is not equal to QP. To resolve this problem, we introduce the concept of minute oxygen delivery (VcO$_2$).

Oxygen contents and saturations are not additive. In the case of a BDCPA, it is not possible to calculate the aortic (Ao) cO$_2$ or saturation based on the oxygen contents and saturations in the right atrium (RA) and PVs. Oxygen content in the aorta depends on both the flow and the cO$_2$ from each of the sources. If we multiply the cO$_2$ in a vessel (measured in mL/L) by the flow through the vessel (measured in L/min), we obtain the VcO$_2$ through the vessel (measured in mL O$_2$/min). We designate this minute oxygen delivery as VcO$_2$.

Therefore, in a BDCPA, where U is upper body, L is upper body, QEP is effective pulmonary blood flow, x is the thermodilution measurement.

\[
VcO_2 = VcO_2_{PA} + VcO_2_{RA} \\
Q_V = Q_U + Q_L \\
Q_U = Q_{EP} \\
Q_V = Q_{EP} + Q_L \\
Q_L = Q_V - Q_{EP} \\
Q_V = x \\
VcO_2 = \frac{Q_V \times cO_2_{AO} - cO_2_{RA}}{(cO_2_{PA} - cO_2_{RA})} \\
VcO_2_{EP} = \frac{VO_2}{(cO_2_{PA} - cO_2_{RA})} \\
VO_2 = \frac{x \times (cO_2_{AO} - cO_2_{RA})}{(cO_2_{PA} - cO_2_{RA})}
\]

Using this method, certain considerations apply to the collection and interpretation of samples during the cardiac catheterization. There should be no competitive blood flow into the PA, including large aortopulmonary collaterals (APCs) or antegrade flow through a patent pulmonary valve. Right atrial blood sampling should be done near the RA–inferior vena cava (IVC) junction to minimize admixture from the PVs, but still allow adequate mixture of blood from the lower body. The PV sample ideally should contain mixed PV blood, but not contain admixture from the IVC.

Subjects

We gathered data prospectively from cardiac catheterizations done in patients with BDCPA from September 2000 to March 2009. We included data sets from multiple catheterizations in the same patient as long as they were done >12 months apart. We excluded those patients with competitive blood flow from the PA when it had not been ligated, such as patients with tricuspid atresia who still had antegrade flow through the pulmonary valve.

Catheterization Procedure

All catheterizations were done under general anesthesia with mechanical, positive-pressure ventilation. Hemodynamic data were collected at the

Abbreviations and Acronyms

- Ao = aortic
- APC = aortopulmonary collateral
- BDCPA = bidirectional cavopulmonary anastomosis
- BSA = body surface area
- cO$_2$ = content of oxygen
- ΔP = mean transpulmonary pressure gradient
- IVC = inferior vena cava
- MRI = magnetic resonance imaging
- RA = right atrium
- PA = pulmonary artery
- PV = pulmonary vein
- PVR = pulmonary vascular resistance
- PVRI = pulmonary vascular resistive index
- Q$_P$ = pulmonary blood flow
- Q$_S$ = cardiac output
- Q$_V$ = systemic ventricular output
- SVC = superior vena cava
- VcO$_2$ = minute oxygen delivery
- VO$_2$ = oxygen consumption

- VcO$_2_{PA}$ = effective pulmonary blood flow, x is the thermodilution measurement.
beginning of the catheterization followed by thermodilution cardiac output studies and prior to any angiography. A thermodilution catheter was used to inject room-temperature saline into the IVC or RA with the thermistor in the ascending aorta. We repeated injections until we had 3 samples that were within 10%, and used the averaged value for cardiac output.

Measured VO$_2$ and PVR were determined using the method described earlier. Predicted VO$_2$ was calculated using the formula by Krovetz and Goldbloom1:

$$\text{VO}_2 = 1.39 \times \text{Height} + 0.84 \times \text{Weight} - 35.7,$$

where height is measured in centimeters and weight is measured in kilograms.

Data Analysis

We looked for correlation between measured and predicted VO$_2$ (indexed and nonindexed). We also looked for correlation between the difference in the predicted and measured VO$_2$ against the measured VO$_2$. Last, we looked for correlations between patient variables such as height, weight, and body surface area (BSA) as well as hemodynamic parameters including cO$_2$, and mean pressures throughout the circulation against the measured VO$_2$. We evaluated whether there was a parameter that could be a surrogate for VO$_2$ measurement with thermodilution cardiac output.

We used the Pearson 2-tailed test to look for correlation coefficients between variables. Results were considered statistically significant if the P value was <.05.

This study was done with the approval of the research ethics board at the IWK Health Centre. Because of the nature of the study, the requirement for informed consent was waived.

RESULTS

Twenty-seven catheterizations were included. Two patients were excluded from the analysis because of competitive pulmonary blood flow via a patent pulmonary valve. This left 25 catheterizations from 21 patients. The age range was 1.3 to 10 years of age at the time of cardiac catheterization, with a median age of 2.9 years.

The systemic ventricle was the morphologically right ventricle in 11 patients (52%) and the morphologically left ventricle in 10 patients (48%). The underlying cardiac malformation was pulmonary atresia with intact ventricular septum in 3 patients (14%), double-inlet left ventricle in 7 patients (33%), atroventricular septal defect in 2 patients (10%), hypoplastic left heart syndrome in 6 patients (29%), and dextrocardia, atroventricular septal defect with heterotaxy in 3 patients (14%).

Fifteen of 21 patients (67%) had collateralization identified at the time of cardiac catheterization. Nine patients (43%) had APCs and 10 patients (48%) had venovenous collaterals, with 4 patients having both APCs and venovenous collaterals. The majority of these were hemodynamically insignificant or were venovenous and did not contribute to any unmeasured shunt. Two patients underwent coil occlusion of collateral vessels; one was a small, left-sided superior vena cava (SVC) and the other was a large APC off of an internal mammary artery.

We found there was no correlation between the predicted VO$_2$ and the measured VO$_2$ (correlation coefficient = −0.26, $P = .21$). We did find correlation between the difference in the predicted and the measured VO$_2$ compared with the measured VO$_2$ (Figure 1). The Krovetz and Goldbloom1 equation increasingly overestimated VO$_2$ as the measured VO$_2$ diminished. An overestimation of VO$_2$ results in an underestimation in PVR.

There were no hemodynamic parameters that were a good substitute for measuring VO$_2$. We did see a weak, but significantly negative, correlation between the cO$_2$ in the RA and the SVC against the VO$_2$ (Table 1). We found that as VO$_2$ increased, the systemic venous cO$_2$ decreased.

As expected, there is a high correlation between the Krovetz and Goldbloom1 predicted VO$_2$ and BSA (correlation coefficient = 0.96, $P < .001$), because this value is calculated from the same parameters as BSA. However, our measured VO$_2$ from thermodilution cardiac output

![FIGURE 1. The relationship between the difference in measured and predicted oxygen consumption (VO$_2$) against predicted VO$_2$. No difference would be represented as a horizontal scattering around 0 (Pearson correlation coefficient = 0.96, $P < .001$).](image)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pearson correlation coefficient (P value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_V</td>
<td>−0.09 (.65)</td>
</tr>
<tr>
<td>Q_V, indexed</td>
<td>0.16 (.42)</td>
</tr>
<tr>
<td>TcO_2 RA</td>
<td>−0.54 (.005)</td>
</tr>
<tr>
<td>TcO_2 PV</td>
<td>−0.37 (.07)</td>
</tr>
<tr>
<td>TcO_2 SVC</td>
<td>−0.39 (.049)</td>
</tr>
<tr>
<td>TcO_2 Ao</td>
<td>−0.37 (.07)</td>
</tr>
<tr>
<td>RAP</td>
<td>−0.02 (.9)</td>
</tr>
<tr>
<td>mPAP</td>
<td>0.04 (.85)</td>
</tr>
<tr>
<td>V_{EDP}</td>
<td>0.07 (.72)</td>
</tr>
</tbody>
</table>

Q_V: Thermodilution cardiac output; TcO_2: total content of oxygen; RA: right atrium; PV: pulmonary vein; SVC: superior vena cava; Ao: aorta; mPAP: mean pulmonary arterial pressure; V_{EDP}: ventricular end diastolic pressure.
undergoing the Fontan procedure with both single right and single left ventricular anatomy. They reported a transpulmonary gradient of 7.2 ± 1.5 mm Hg in those who died compared with $5.3 \pm 1.9 (P = .03)$ in survivors. Elevated pulmonary arterial pressures also predicted a higher likelihood of Fontan takedown.

Malhotra and coworkers19 reviewed the results of 52 Fontan procedures in patients with systemic left or right ventricles. They found that an elevated PVRI was predictive of Fontan failure resulting in death, revision or takedown of the Fontan, or cardiac transplant. The PVRI in the group that failed with the Fontan procedure was 2.43 ± 1.01 Woods units, which is significantly higher than the overall group ($1.95 \pm 1.42 [P = .007]$). This study was performed in Denver, Colorado, with patients living at high altitudes. Therefore, although the finding of an increased PVRI in this group is important, the specific PVRI probably cannot be generalized to other populations. Other authors have found increased PVR to correlate with longer duration of pleural effusion.20

Our data confirm that using an estimated VO$_2$ for calculation of PVR introduces error. The majority of our patients had a measured VO$_2$ that was lower than their predicted VO$_2$. Because all our patients were about the same age at the time of their catheterizations, the predicted VO$_2$ based on the Krovetz and Goldbloom1 formula tended to be very similar between patients. This explains why there was a nearly linear relationship between the difference in predicted and measured VO$_2$ versus the measured VO$_2$.

As seen in Figure 1, the predicted VO$_2$ was almost always greater than the measured VO$_2$. Because the calculation of PVR is based on pressure divided by flow, and flow is proportional to VO$_2$ using the Fick principle, an erroneously high VO$_2$ results in a systematic underestimation of PVR. This has also been shown to be the case in other studies that have examined the effect of using an estimated VO$_2$ versus a measured VO$_2$.6,8 We also show that there is no hemodynamic parameter that can be substituted for direct measurement of VO$_2$. Although there was correlation with cO$_2$ in the RA and SVC against the indexed-measured VO$_2$, this correlation probably tells us more about how the body responds in low cardiac output situations. Again, using the Fick principle ($\text{VO}_2 = Qv \times (\text{cO}_2\text{AO} - \text{cO}_2\text{SV})$) a decrease in CO$_2$SV represents more oxygen extraction. If cardiac output is relatively fixed, the only way to increase VO$_2$ is to increase oxygen extraction at the tissue level, resulting in a lower venous O$_2$.

We did not find correlation between the measured VO$_2$ and BSA, as was present when we looked at the Krovetz and Goldbloom1 prediction of VO$_2$ against BSA. Prediction of VO$_2$ based on height and weight is clearly oversimplified because it is influenced by other variables. Li and colleagues21 demonstrated that increases arterial in arterial partial pressure of carbon dioxide (Paco$_2$) from 35 to 55 mm Hg resulted in

FIGURE 2. There was no correlation between body surface area and measured oxygen consumption (Pearson correlation coefficient $= -0.02, P = .211$).

measurement did not correlate with BSA at all (correlation coefficient $= 0.28, P < .16$; Figure 2).

DISCUSSION

The Fontan operation is the final stage in a series of operations creating a circuit to route systemic venous return passively to the PAs, so a single ventricle provides systemic output. It is used to palliate a number of complex congenital heart defects in which a biventricular circulation cannot be attained.

The Fontan operation is preceded by a BDCPA in which the SVC is connected to the PAs. Choussat and Fontan outlined 10 criteria, which have become known as the 10 Commandments, to ensure a good outcome for the Fontan procedure.12 These are essentially a mean pulmonary arterial pressure of <15 to 20 mm Hg and a normal PVRI.13,14

There has been controversy over the necessity of cardiac catheterization for risk assessment prior to the Fontan procedure with the availability of magnetic resonance imaging (MRI) to provide good anatomic assessment of cardiac and pulmonary arterial anatomy.15,16 However, catheterization remains the only way to assess PVRI, pulmonary arterial pressure, transpulmonary gradient, and ventricular end diastolic pressure, which are all predictive of outcome.

Mair and colleagues17 developed an index based on PVR and ventricular end diastolic pressure. They evaluated this index as a predictor of mortality in children with tricuspid atresia undergoing the Fontan procedure. They found an index of <4 was associated with an 8% late mortality whereas an index >4 was associated with a late mortality of 39%.

Pizzaro and associates18 reported the outcomes of their patient population of 107 children aged 11 to 35 months undergoing the Fontan procedure with both single right and single left ventricular anatomy. They reported a transpulmonary gradient of 7.2 ± 1.5 mm Hg in those who died compared with $5.3 \pm 1.9 (P = .03)$ in survivors. Elevated pulmonary arterial pressures also predicted a higher likelihood of Fontan takedown.
a significant decrease in VO₂ from 146 mL/min/m² to 126 mL/min/m² in postoperative BDCPA patients.

The formula by Lafarge and Miettinen⁵ attempts to compensate for some of those variables with the incorporation of heart rate into its predictive formula. We did not record heart rate prospectively at the time of our data acquisition, and its retrospective assessment is not possible because heart rate can vary significantly, even under general anesthesia. However, this formula has been shown to underestimate VO₂ when evaluated in this patient population.⁶

The results of our comparison of a measured VO₂ by thermodilution cardiac output to a predicted VO₂ by Krovetz and Goldbloom¹ were similar to the results of a comparison by Li and colleagues⁷ between measured VO₂ by respiratory mass spectrometry with 4 predictive formulas (Lindahl,¹ Wessel and associates,⁵ Lundell and colleagues,³ and Lafarge and Miettinnen⁵). Their study was performed in ventilated children with congenital heart disease. Both studies demonstrate that the predictive formulas tend to overestimate lower VO₂ and underestimate higher VO₂ (Figure 1). In our study, we excluded patients with large APCs from our assessment. It is well known that APCs are often present, and it is difficult to quantify APC flow angiographically. Grosse-Wortmann and colleagues²² recently demonstrated the quantification of APC flow by MRI. They found that APC flow contributed as much as 46% of Qp in patients with a BDCPA as measured by MRI. Although this may seem problematic, our formula derives Qp based on pulmonary venous cO₂ so that APC flow is accounted for. As such, APC flow is not a concern in assessing Qs. Potential for error remains, however, if the measured pulmonary venous cO₂ has been altered by flow from a systemic vein to a pulmonary venous connection or regional pulmonary disease.

It should be noted that the thermodilution method must be applied with caution in patients with severe atrioventricular or aortic valve regurgitation. Although some studies have failed to find an effect on thermodilution-derived cardiac output compared with the Fick method in patients with severe tricuspid valve regurgitation,²³ other studies have found that the thermodilution method underestimates cardiac output in this situation.²⁴–²⁶ None of our patients had more than moderate valvar regurgitation. However, one must keep in mind that if this method is applied in patients with significant valvar regurgitation, a potential source of error is introduced.

One final potential limitation of this technique is that it in these circumstances, it is not possible to obtain a pure systemic or pulmonary venous oxygen saturation. We attempted to overcome this with careful positioning of the sampling catheter, as described earlier. Specifically, the pulmonary venous sample was taken from a posterior location in the pulmonary venous atrium, close to the orifice of the PVs, to sample only pulmonary venous return. In our series, the pulmonary venous saturations were all 95% or more, suggesting little systemic venous contamination. However, contamination of systemic or pulmonary venous samples should be regarded as another potential source of error when using this method.

CONCLUSIONS

The reliance on an estimated VO₂ in the assessment of PVR in patients with BDCPA prior to the Fontan operation provides erroneous results. The method presented for calculating VO₂ is simple and can be done in centers where other methods of measuring VO₂ directly are not readily available, by incorporating thermodilution cardiac output as part of the routine pre-Fontan cardiac catheterization. In this era, there are few instances when the Fontan procedure is not offered on the basis of risk. However, it remains useful to assess patients’ risk and to evaluate outcomes in relation to their risk. Because assessing PVR remains one of the primary reasons for cardiac catheterization in this group of patients, this method provides a more precise assessment of PVR and can be used with ease.

We thank Colleen O’Connell, PhD, from the IWK Perinatal Epidemiology Research Unit, for her assistance with statistical analysis.

References

15. Nakamishi T. Cardiac catheterization is necessary before bidirectional Glenn and Fontan procedures in single ventricle physiology. Pediatric Cardiol. 2005;26:159-61.

