

Reply to the Editor:

I am in agreement with Drs Korst and Lee that there may be certain populations with nondysplastic Barrett’s esophagus (BE) who may be at increased risk for esophageal cancer. There are currently no compelling data, however, to recommend any intervention beyond repeated surveillance endoscopy in patients with BE. The American Gastroenterological Association based its recommendation for surveillance on an estimated rate of progression of disease to high-grade dysplasia or adenocarcinoma of 0.5%. Recent large, population-based studies suggest that this risk estimate is actually too high. Hvid-Jensen and colleagues report in the New England Journal of Medicine in October 2011 an annual risk of progression to adenocarcinoma in patients with BE of 0.12%. This finding was based on analysis of a comprehensive database that included the entire population of Denmark. In a similar study of the entire population of Northern Ireland, Bhat and colleagues reported a nearly identical absolute annual risk of 0.13%.

Current data indicate that the risk to the patient of malignant transformation from BE is even lower than previously thought, suggesting caution with invasive strategies that may in fact be overtreatment. There may be a role for radiofrequency ablation in selected—and currently undefined—subgroups of patients with nondysplastic BE. Given the overall low cancer risk, the bar is set very high to prove cost-effectiveness, reduction in cancer progression, or reduction in mortality. I believe that radiofrequency ablation for nondysplastic BE is therefore difficult to justify, outside of a well-reasoned clinical trial.

Nirmal K. Veeramachaneni, MD
Division of Cardiothoracic Surgery
University of North Carolina–Chapel Hill
Chapel Hill, NC

References

doi:10.1016/j.jtcvs.2012.01.023

VENOVOUS EXTRACORPOREAL MEMBRANE OXYGENATION IN ACUTE RESPIRATORY FAILURE: DO WE NEED A NEW CONFIGURATION?

To the Editor:

We read with great interest the article by Bonacchi and colleagues in a recent issue of The Journal of Thoracic and Cardiovascular Surgery. Bonacchi and colleagues presented their experience with the use of venovenous extracorporeal membrane oxygenation (ECMO) in 30 patients with severe acute respiratory failure and described their experience with the use of a customized arterial cannula to reduce the blood recirculation fraction (BRF) when high ECMO flows are needed to improve systemic oxygenation. In their “χ” configuration, a traditional inflow cannula is modified by making a 60° angle in its distal third to allow tip orientation toward the tricuspid valve. In their series, Bonacchi and colleagues reported significant improvements in oxygenation indices and a reduction of more than 20% in the BRF. Importantly, the study showed that the modified cannula can be used safely without mechanical complications.

The problem of recirculation with a double-lumen catheter for venovenous ECMO has been well studied in both animal and human models. In patients with acute respiratory failure who require high ECMO flow support, a low BRF is key to ensure adequate systemic oxygen delivery. The study by Bonacchi and colleagues addresses this important issue and demonstrates that a low BRF is associated with successful venovenous ECMO in patients with respiratory distress. Although we recognize the efforts of Bonacchi and colleagues to develop a new strategy to overcome the problem of BRF when high ECMO flows are needed, we would like to point out several important points that they failed to include in their report. First, a bicaval dual-lumen catheter that is already available in the United States (Avalon Elite; Avalon Laboratories LLC, Rancho Dominguez, Calif) can be safely and successfully used to provide adequate venovenous ECMO support in patients with acute respiratory failure. Second, the use of this dual-lumen Avalon Elite cannula offers the advantage of single-site cannulation, eliminates the need to use multiple catheters, and avoids the use femoral vascular access. Third, studies have shown that the use of the dual-lumen Avalon Elite cannula fails in a very small BRF (as low as 2%). Finally, placement of the dual-lumen Avalon Elite cannula can be successfully achieved with fluoroscopic and a transthoracic echocardiographic guidance and does not require an invasive transesophageal approach.

Although we applaud the efforts of Bonacchi and colleagues and recognize the value of their technique in overcoming the problem of BRF, we believe that the use of the currently
available dual-lumen Avalon Elite cannula offers many advantages relative to their proposed new configuration and should be the preferred approach for patients with acute respiratory failure and for those being bridged to lung transplant. The use of the modified catheter and χ configuration of Bonacchi and colleagues should be limited to patients who have access to the currently available technology, such as the Avalon Elite dual-lumen catheter.

Enrique Diaz-Guzman, MD a,b
James Lynch, MD c,d
Charles W. Hoopes, MD e,f

aUniversity of Kentucky Transplant Center
Lexington, Ky
bAssistant Professor of Medicine
Medical Director of Lung Transplant
University of Kentucky
Lexington, Ky
cDepartment of Surgery
University of Kentucky
Lexington, Ky
dAssociate Professor of Surgery
Director of Heart & Lung Transplantation
University of Kentucky
Lexington, Ky

dated by Diaz-Guzman and colleagues; nevertheless, its limits and disadvantages were not presented. Intrinsically, the adult bilumen cannula presents some structural limitations and clinical restrictions. 3-5 In contrast with Diaz-Guzman and colleagues, we think that an adequate and strict patient selection is necessary for appropriate use of this device to achieve optimal results.

From our initial experience we have identified some principal limitations of the adult Avalon bilumen cannula:

Maximal blood flow achieved: Also with a major dimension cannula (31 F) the limit in blood flow is 5 to 6 L/min. 3-5 This value could be inadequate in different clinical scenarios, such as when pulmonary function is very impaired and patients require deep protective pulmonary ventilation. In this situation, the complete extracorporeal blood oxygenation is necessary (venovenous ECMO blood flow >75% of cardiac output1). The data in our hands seem to indicate that in these circumstances the flow generated from a 31 F cannula could be insufficient, if a patient’s body surface area is greater than 2.0 m² or body weight is greater than 80 kg (with our configuration, we have treated with no problems obese patients up to a body weight of 165 kg), especially if protective pulmonary ventilation is required. Similar considerations could be applied to smaller patients with hyperdynamic status (such as septic shock or fever). We have treated patients with cardiac outputs as great as 22 L/min. Inflow and outflow pressure gradient: From our data (as yet unpublished)