With regard to the possible resistance by surgeons to adopt these interventions, we think the availability of compelling evidence in support of these interventions to prevent lung injury will eliminate any practical concerns.

Dr Macedo and colleagues refer to a trial that will assess the effect of lung perfusion/ventilation during CPB. We look forward to their results, which will hopefully add further knowledge to face the continued challenge of lung injury during cardiac surgery.

Hajime Imura, MD
Gianni D. Angelini, FRCS
Saadeh M. Saleiman, DS,
Raimondo Ascione, FRCS
Nippon Medical School
Tokyo, Japan
Bristol Heart Institute Bristol, United Kingdom

References

doi:10.1016/j.jtcvs.2009.08.049

PULMONARY AUTOGRAFT FOR MITRAL VALVE REPLACEMENT: MAKING A SIMPLE PROCEDURE COMPLEX?

To the Editor:
I read with interest the article by Kumar and colleagues1 about the use of pulmonary autografts for mitral valve replacement. I agree with the authors that cardiac surgeons working in Third World countries are faced with a major problem in the management of large numbers of patients with valvular disease. Most of those patients are of low socioeconomic and educational class, living in remote villages and mountains. There is no family practice or general practitioner system to provide early diagnosis and referral, postoperative follow-up, and anticoagulation control. Patients usually present late with advanced disease that makes repair impossible. The magnitude of the problem is escalated in children and women of childbearing age because we have no ideal valve substitute.

The pulmonary autograft concept is attractive but still has its drawbacks and complications. The procedure is complex and technically demanding, requiring at least double the usual crossclamp and bypass times. The procedure is not free of charge because there is a price for the homografts or preparation of the autografts, plus the added cost of complications. The mortality of approximately 15% reported by the authors is still high compared with single mitral valve replacement. Kabbani and colleagues2 reported 5% early mortality and 6% late mortality, but as they stated, it is “clearly related to the procedure,” which entails higher overall mortality. The issue of converting a single-valve into a double-valve disease is irritating because we have to expect long-term sequelae of pulmonary and mitral valve failures. The main concern with pulmonary autografts or homografts is early calcification. The removal of calcified grafts, as experienced in aortic homografts, is usually disastrous and has a high complication rate, including left ventricular rupture. The same complications are associated with the use of aortic or mitral homografts for mitral valve replacement. All of these autografts and homografts have to compete with the standard stented bioprostheses, which are improving and technically easier to insert, and require no anticoagulation. At the present time, bioprosthetic valves remain the standard in these patients, and manufacturers have shown us better preservation and longer durability.3

Khaled E. Al-Ebrahim, FRCSC
Department of Cardiothoracic Surgery
King Abdullah University
Jeddah, Saudi Arabia

References

doi:10.1016/j.jtcvs.2009.08.049

Reply to the Editor:
We are thankful to Dr Khaled E. Al-Ebrahim for his comments and critique. These were the same arguments raised when the Ross procedure for aortic valve replacement was first reported by Donald Ross in 1967.

The patients undergoing operation are young and clearly unsuitable for tissue valves. The surgery is indeed complex but provides superior hemodynamic results with a higher valve area. In addition, these patients only require an echocardiogram at yearly intervals, receive no medication 1 year after surgery, and do not require blood tests. The most important advantage is that it is a living valve, and we now have more than a 15-year follow-up of our own results for the Ross (aortic valve replacement) procedure. There has been no reoperation in the adults with a pulmonary homograft.

We believe these early results will translate into superior outcomes in

The Journal of Thoracic and Cardiovascular Surgery • Volume 139, Number 1 237
the long term compared with other options for these patients.

A. Sampath Kumar, MCh
All India Institute of Medical Sciences
Department of Cardiothoracic/Vascular Surgery
Ansari Nagar
New Delhi, India
doi:10.1016/j.jtcvs.2009.09.001

OPTIMAL SURGICAL APPROACH FOR REPAIR OF AORTOPULMONARY WINDOW WITH AORTIC ORIGIN OF THE RIGHT PULMONARY ARTERY

To the Editor:
We read with great interest the article titled “Single-Stage Repair of Aortopulmonary Window With Interrupted Aortic Arch by Transection of the Aorta and Direct Reconstruction” by Yoshida and associates.1

The authors describe a repair technique using autologous arterial wall tissue without artificial material for a patient with aortopulmonary window (APW), right pulmonary artery (RPA) originating from the ascending aorta, and interrupted aortic arch. However, the repair technique for APW and RPA originating from the ascending aorta totally coincides with our previously reported technique.2 Inasmuch as APW is a relatively uncommon congenital heart defect, to establish the universality of these kinds of procedures expecting the future growth potential of both the pulmonary artery and the aorta, it is necessary to accumulate widespread data related to the applicability and the late follow-up results.

Taking every step into consideration, the reconstruction of the pulmonary bifurcation is the most critical step in the procedure. Where on the ascending aorta of authors’ patients did the RPA arise? As more dorsal and unequal partitioning of the aortopulmonary trunk by the conotruncal ridges is the embryogenesis of the APW associated with origin of the RPA from the ascending aorta,3 the RPA commonly arises from the right posterolateral aspect of the ascending aorta, and the geometry would be better preserved by our technique with an extensive mobilization of both the aortic arch and the pulmonary arteries. Therefore, our technique seems to be impartially applicable to this combination. Consequently, as the authors noted in the article, we also agree that it can allow not only sufficient enlargement but also growth of the reconstructed arteries (Figure 1).2

We appreciate that our technique using only autologous arterial wall tissue was valid for a large APW extending to the proximal site of the pulmonary artery trunk from the pulmonary bifurcation and with the interrupted aortic arch.1 However, there are a few useful modifications of our technique: appropriately augmenting one of the reconstructed arteries with autologous pericardium is a good practical alternative to avoid a tense anastomosis of the reconstructed arteries in the individual geometry and associated lesions.4,5

We think that our technique using autologous arterial wall tissue is valid for any APW with aortic origin of the RPA, with some practical modifications, and good late results were also certified by this article.

Tetsuya Kitagawa, MD, PhD
Takashi Kitaichi, MD, PhD
Homare Yoshida, MD, PhD
Department of Cardiovascular Surgery
Institute of Health Biosciences
The University of Tokushima
Graduate School
Tokushima, Japan

References

do:10.1016/j.jtcvs.2009.08.053

Reply to the Editor:
We thank Dr Kitagawa for his thoughtful and informative comments.