Multimodal evaluation of in vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells


      Mouse embryonic stem cells have demonstrated potential to restore infarcted myocardium after acute myocardial infarction. Although the underlying mechanism remains controversial, magnetic resonance imaging has provided reliable in vivo assessment of functional recovery after cellular transplants. Multimodal comparison of the restorative effects of mouse embryonic stem cells and mouse embryonic fibroblasts was performed to validate magnetic resonance imaging data and provide mechanistic insight.


      SCID-beige mice (n = 55) underwent coronary artery ligation followed by injection of 2.5 × 105 mouse embryonic stem cells, 2.5 × 105 mouse embryonic fibroblasts, or normal saline solution. In vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells was evaluated by (1) in vivo pressure–volume loops, (2) in vivo bioluminescence imaging, and (3) ex vivo TaqMan (Roche Molecular Diagnostics, Pleasanton, Calif) polymerase chain reaction and immunohistologic examination.


      In vivo magnetic resonance imaging demonstrated significant improvement in left ventricular ejection fraction at 1 week in the mouse embryonic stem cell group. This finding was validated with (1) pressure–volume loop analysis demonstrating significantly improved systolic and diastolic functions, (2) bioluminescence imaging and polymerase chain reaction showing superior posttransplant survival of mouse embryonic stem cells, (3) immunohistologic identification of cardiac phenotype within engrafted mouse embryonic stem cells, and (4) polymerase chain reaction measuring increased expressions of angiogenic and antiapoptotic genes and decreased expressions of antifibrotic genes.


      This study validates in vivo magnetic resonance imaging as an effective means of evaluating the restorative potential of mouse embryonic stem cells.

      Abbreviations and Acronyms:

      AMI (acute myocardial infarction), BLI (bioluminescence imaging), Ees (end-systolic elastance), EMax (maximal elastance), fluc (firefly luciferase gene), GFP (green fluorescent protein), LAD (left anterior descending coronary artery), LVEF (left ventricular ejection fraction), mEF (mouse embryonic fibroblast), mESC (mouse embryonic stem cell), MMP (matrix metalloproteinase), MRI (magnetic resonance imaging), NS (normal saline solution treatment), POD (postoperative day), PV (pressure–volume), RT-PCR (reverse transcriptase polymerase chain reaction), TM-PCR (TaqMan polymerase chain reaction), TNF α (tumor necrosis factor α), VEGF (vascular endothelial growth factor)

      CTSNet classification

      To read this article in full you will need to make a payment


        • Schachinger V.
        • Erbs S.
        • Elsasser A.
        • Haberbosch W.
        • Hambrecht R.
        • Holschermann H.
        • et al.
        Intracoronary bone marrow–derived progenitor cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1210-1221
        • Chien K.R.
        Stem cells: lost in translation.
        Nature. 2004; 428: 607-608
        • Kato S.
        • Spinale F.G.
        • Tanaka R.
        • Johnson W.
        • Cooper G.T.
        • Zile M.R.
        Inhibition of collagen cross-linking: effects on fibrillar collagen and ventricular diastolic function.
        Am J Physiol. 1995; 269: H863-H868
        • Kofidis T.
        • de Bruin J.L.
        • Yamane T.
        • Tanaka M.
        • Lebl D.R.
        • Swijnenburg R.J.
        • et al.
        Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury.
        Circulation. 2005; 111: 2486-2493
        • Li R.K.
        • Weisel R.D.
        • Mickle D.A.
        • Jia Z.Q.
        • Kim E.J.
        • Sakai T.
        • et al.
        Autologous porcine heart cell transplantation improved heart function after a myocardial infarction.
        J Thorac Cardiovasc Surg. 2000; 119: 62-68
        • Tomita S.
        • Li R.K.
        • Weisel R.D.
        • Mickle D.A.
        • Kim E.J.
        • Sakai T.
        • et al.
        Autologous transplantation of bone marrow cells improves damaged heart function.
        Circulation. 1999; 100: II247-II256
        • Arai T.
        • Kofidis T.
        • Bulte J.W.
        • de Bruin J.
        • Venook R.D.
        • Berry G.J.
        • et al.
        Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t.
        Magn Reson Med. 2006; 55: 203-209
        • Meyer G.P.
        • Wollert K.C.
        • Lotz J.
        • Steffens J.
        • Lippolt P.
        • Fichtner S.
        • et al.
        Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.
        Circulation. 2006; 113: 1287-1294
        • Orlic D.
        • Kajstura J.
        • Chimenti S.
        • Jakoniuk I.
        • Anderson S.M.
        • Li B.
        • et al.
        Bone marrow cells regenerate infarcted myocardium.
        Nature. 2001; 410: 701-705
        • Lunde K.
        • Solheim S.
        • Aakhus S.
        • Arnesen H.
        • Abdelnoor M.
        • Egeland T.
        • et al.
        Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1199-1209
        • Assmus B.
        • Honold J.
        • Schachinger V.
        • Britten M.B.
        • Fischer-Rasokat U.
        • Lehmann R.
        • et al.
        Transcoronary transplantation of progenitor cells after myocardial infarction.
        N Engl J Med. 2006; 355: 1222-1232
        • Kass D.A.
        • Midei M.
        • Graves W.
        • Brinker J.A.
        • Maughan W.L.
        Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man.
        Cathet Cardiovasc Diagn. 1988; 15: 192-202
        • Swijnenburg R.J.
        • Tanaka M.
        • Vogel H.
        • Baker J.
        • Kofidis T.
        • Gunawan F.
        • et al.
        Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium.
        Circulation. 2005; 112: I166-I172
        • Muller-Ehmsen J.
        • Whittaker P.
        • Kloner R.A.
        • Dow J.S.
        • Sakoda T.
        • Long T.I.
        • et al.
        Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium.
        J Mol Cell Cardiol. 2002; 34: 107-116
        • Nussbaum J.
        • Minami E.
        • Laflamme M.A.
        • Virag J.A.
        • Ware C.B.
        • Masino A.
        • et al.
        Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response.
        FASEB J. 2007; 21: 1345-1357
        • Jain M.
        • DerSimonian H.
        • Brenner D.A.
        • Ngoy S.
        • Teller P.
        • Edge A.S.
        • et al.
        Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction.
        Circulation. 2001; 103: 1920-1927
        • Weisel R.D.
        • Li R.K.
        • Mickle D.A.
        • Yau T.M.
        Cell transplantation comes of age.
        J Thorac Cardiovasc Surg. 2001; 121: 835-836
        • Bhatnagar S.K.
        • al-Yusuf A.R.
        Left ventricular blood flow analysis in patients with and without a thrombus after first Q wave acute anterior myocardial infarction: two-dimensional Doppler echocardiographic study.
        Angiology. 1992; 43: 188-194
        • Li R.K.
        • Mickle D.A.
        • Weisel R.D.
        • Zhang J.
        • Mohabeer M.K.
        In vivo survival and function of transplanted rat cardiomyocytes.
        Circ Res. 1996; 78: 283-288
        • Chen Y.
        • Ke Q.
        • Yang Y.
        • Rana J.S.
        • Tang J.
        • Morgan J.P.
        • Xiao Y.F.
        Cardiomyocytes overexpressing TNF-alpha attract migration of embryonic stem cells via activation of p38 and c-Jun amino-terminal kinase.
        FASEB J. 2003; 17: 2231-2239
        • Kurrelmeyer K.M.
        • Michael L.H.
        • Baumgarten G.
        • Taffet G.E.
        • Peschon J.J.
        • Sivasubramanian N.
        • et al.
        Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction.
        Proc Natl Acad Sci U S A. 2000; 97: 5456-5461
        • Nakano M.
        • Knowlton A.A.
        • Dibbs Z.
        • Mann D.L.
        Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte.
        Circulation. 1998; 97: 1392-1400
        • Sivasubramanian N.
        • Coker M.L.
        • Kurrelmeyer K.M.
        • MacLellan W.R.
        • DeMayo F.J.
        • Spinale F.G.
        • et al.
        Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor.
        Circulation. 2001; 104: 826-831
        • Gunja-Smith Z.
        • Morales A.R.
        • Romanelli R.
        • Woessner Jr., J.F.
        Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links.
        Am J Pathol. 1996; 148: 1639-1648
        • Yu Q.
        • Horak K.
        • Larson D.F.
        Role of T lymphocytes in hypertension-induced cardiac extracellular matrix remodeling.
        Hypertension. 2006; 48: 98-104
        • Klug M.G.
        • Soonpaa M.H.
        • Koh G.Y.
        • Field L.J.
        Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts.
        J Clin Invest. 1996; 98: 216-224
        • Soonpaa M.H.
        • Koh G.Y.
        • Klug M.G.
        • Field L.J.
        Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium.
        Science. 1994; 264: 98-101
        • Cao F.
        • Lin S.
        • Xie X.
        • Ray P.
        • Patel M.
        • Zhang X.
        • et al.
        In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery.
        Circulation. 2006; 113: 1005-1014