Feasibility of preservation of subvalvular apparatus in mitral valve replacement with the On-X mechanical valve

Hiroshi Tanaka, MD, Teruo Yamshita, MD, Kenji Okada, MD, Keitaro Nakagiri, MD, Yujiro Kawanishi, MD, and Yutaka Okita, MD, Kobe, Japan

Preserving subvalvular apparatus in mitral valve replacement brings a significant long-term advantage by preserving left ventricular function. The possibility of prosthetic valve entrapment of the retained subvalvular apparatus, left ventricular outflow tract obstruction, and implantation of a smaller-sized prosthesis has been of major concern to investigators advocating this procedure. Recently introduced, the On-X mechanical valve (Medical Carbon Research Institute, Austin, Tex) has the advantage of reduced anticoagulation and a specific structure of leaflet flare for protection from retained subvalvular apparatus and pannus encroachment. We operated on 6 patients requiring mitral valve replacements using the On-X mechanical mitral valve and obtained good results without complications associated with this procedure.

Clinical Summary
From October 2005 to March 2006, 6 patients underwent mitral valve replacement for mitral valve stenosis using the On-X mitral valves with the techniques of preserving mitral papillary muscle continuity.
TABLE 1. Techniques for preserving subvalvular apparatus and pre- and postoperative electrocardiography data

<table>
<thead>
<tr>
<th>Case</th>
<th>Technique for preserving mitral-papillary muscle continuity</th>
<th>Preop</th>
<th>Postop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Artificial chordae ×4</td>
<td>43/30</td>
<td>42/36</td>
</tr>
<tr>
<td>2</td>
<td>PML preserved</td>
<td>38/23</td>
<td>38/28</td>
</tr>
<tr>
<td>3</td>
<td>Artificial chordae ×4</td>
<td>49/37</td>
<td>48/36</td>
</tr>
<tr>
<td>4</td>
<td>PML and lateral part of AML preserved; artificial chordae ×1</td>
<td>53/35</td>
<td>55/35</td>
</tr>
<tr>
<td>5</td>
<td>Artificial chordae ×4</td>
<td>47/28</td>
<td>48/25</td>
</tr>
<tr>
<td>6</td>
<td>PML preserved; artificial chordae ×2</td>
<td>53/40</td>
<td>55/40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LVDd/Ds (mm)</th>
<th>EF (%)</th>
<th>LVDd/Ds (mm)</th>
<th>EF (%)</th>
<th>LVOT PG (mm Hg)</th>
</tr>
</thead>
</table>

LVDd, Left ventricular dimension diastole; Ds, dimension systole; EF, ejection fraction; LVOT PG, pressure gradient across the left ventricular outflow tract; PML, posterior mitral leaflet; AML, anterior mitral leaflet.

Methods

After cardiopulmonary bypass is established, the aorta is clamped and cardioplegic arrest is obtained. The left atrium is opened from the right side after dissecting the groove. A Cosgrove retractor is inserted, and the mitral valve is examined. Basically, autologous subvalvular apparatus is meant to be preserved. However, in case of severe calcified subvalvular apparatus that cannot be preserved, we reconstruct the chordae tendineae with polytetrafluoroethylene sutures (Gore-Tex suture; W. L. Gore & Associates, Inc, Flagstaff, Ariz) as artificial chordae. If the patient’s left ventricle is so small that the retained subvalvular apparatus may cause left ventricular outflow obstruction, preserving the continuity on the anterior mitral leaflet side is abandoned. The On-X valve is implanted with 2-0 Ethibond everting mattress sutures (Ethicon, Inc, Somerville, NJ) in the antianatomic position.

Results

No patients died in the hospital or during the follow-up period. Echocardiography was performed 1 month after the operation. The preservation techniques and preoperative and postoperative echocardiographic data are shown in Table 1. Left ventricular function was maintained or improved in all cases. No instances of prosthetic valve dysfunction and no significant pressure gradients across the left ventricular outflow tract were recorded.

Comments

Chordal preservation in mitral valve replacement has been widely accepted because of the advantage of preserving left ventricular function and decreasing the risk for ventricular rupture in mitral valve replacement. This technique should incorporate several principles:

1. The procedure must not cause left ventricular outflow obstruction.
2. Retained subvalvular structures should not interfere with the prosthetic valve mechanism.
3. Sufficient tissue should be allowed for implantation of a suitably sized valve.

Currently, various kinds of prosthetic valves are available in mitral valve surgery. The St Jude Medical mitral valve (St Jude Medical, Inc, St Paul, Minn), whose pivot is located in the left atrial portion of the housing and whose leaflets open within the housing profile, has been believed to be a most suitable valve for chordal-preserving mitral valve replacement. However, several cases in which the preserved subvalvular apparatus were entrapped have been reported. The Carbomedics Standard mitral valve (Sulzer Carbomedics, Inc, Austin, Tex), which has been reported to cause few instances of thrombus or pannus formation, is designed so that the leaflets open beyond the housing profile, which might cause entrapment of retained subvalvular apparatus. With regard to stented bioprosthesis valves, a high-profile valve could cause left ventricular outflow obstruction in the subvalvular apparatus preserving mitral valve surgery as previously reported (Figure 1).

The On-X mitral valve is designed to prevent pannus ingrowth by high-profile inlet flare, although it is not so high as stented bioprostheses. Our experience showed the feasibility of chordal-preserving mitral valve replacement consisting of various techniques using the On-X valve, although it included a small number of cases. This technique using the On-X valve could bring better long-term outcome in patients undergoing mitral valve replacement.

References